

Tides in Oceans Bounded by Meridians. I. Ocean Bounded by Complete Meridian: General Equations. II. Ocean Bounded by Complete Meridian: Diurnal Tides. with an Appendix on Fourier Expansions of Associated Legendre Functions

J. Proudman and A. T. Doodson

Phil. Trans. R. Soc. Lond. A 1936 235, 273-342

doi: 10.1098/rsta.1936.0004

Email alerting service

Receive free email alerts when new articles cite this article - sign up in the box at the top right-hand corner of the article or click here

To subscribe to Phil. Trans. R. Soc. Lond. A go to: http://rsta.royalsocietypublishing.org/subscriptions

IX—Tides in Oceans Bounded by Meridians

I—Ocean Bounded by Complete Meridian: General Equations By J. PROUDMAN, F.R.S.

II—Ocean Bounded by Complete Meridian: Diurnal Tides By A. T. Doodson, F.R.S.

With an Appendix on Fourier Expansions of Associated Legendre Functions

By A. T. Doodson, F.R.S.

(Received October 3, 1935—Read February 6, 1936)

I—Ocean Bounded by Complete Meridian: General Equations By J. PROUDMAN, F.R.S.

1—Introduction

This is the first part of a series of papers by A. T. Doodson and myself, in which we intend to publish certain investigations which we have been carrying out intermittently for some years.

In 1916 I published an account* of a general method of treating the dynamical equations of the tides in which the ordinary differential equations were transformed into an infinite sequence of algebraic equations. One of the chief features of the treatment is that an attempt was made to deal rigorously with questions of At that time the determination of the tides in a flat rectangular sea, a flat sectorial sea, and an ocean bounded by two meridians constituted mathematical problems which were completely unsolved, and I pointed out that for basins of these shapes and of uniform depth the coefficients in my algebraic equations could easily be evaluated. It is a disadvantage of the method, however,

* 'Proc. Lond. Math. Soc.,' vol. 18, p. 1. (1916).

VOL. CCXXXV—A 753, (Price 12s.)

[Published May 26, 1936.

J. PROUDMAN

as applied to these systems, that the algebraic equations are naturally arranged in a double sequence and not in a single sequence.

In 1920 G. I. Taylor published * his solution of the problem of the rectangular basin, and in this solution there is also an unlimited number of algebraic equations, but they are naturally arranged in a single sequence.

It then appeared advisable to examine whether methods somewhat similar to those of Taylor could be applied to the other problems, and with this object I considered the case of a flat semicircular sea and that of a hemispherical ocean bounded by a complete meridian, both basins having uniform depth. For the semicircular basin the attempt was completely successful,† but for the hemispherical basin it was first necessary to evaluate a number of functions analogous to Bessel's functions. The investigation was taken over by Doodson; he tabulated the functions; and then proceeded to use them. It was one of the features of the method that the unknowns of the algebraic equations had to be determined by the vanishing along the equator of a function of longitude represented by a trigonometrical series. Doodson soon found that this determination was impracticable and in an examination of the case in which the rotation of the earth is neglected I showed that the corresponding series do not converge on the equator. It may be remarked that the difficulty would not arise for an ocean bounded by the meridians and a parallel of latitude other than the equator; for such a basin the tides could be determined by the method of the semicircular sea in which Bessel's functions were replaced by Doodson's functions.

Doodson then developed two new methods. In one of these methods the fundamental differential equations are replaced by equations of finite differences; in the other, series are arranged in powers of the difference of longitude between the bounding meridians. It is his intention to publish his results in these papers.

In 1927 Goldsbrough began to publish his solutions of problems of the type in In his determination of forced tides there is an infinite sequence of algebraic equations, and as in Taylor's solution, they are naturally arranged in a single sequence. But any method is so complicated and there are so many special cases for which it is desirable to have numerical results that it appeared advisable to continue our investigations. It may be remarked that in two recent papers GOLDSBROUGH has used doubly infinite sequences of equations to discuss free tidal oscillations, and that these equations are practically the same as those resulting from my method.

In the present part, I follow the general ideas of the paper of 1916, but introduce The coordinates here used are not latitude and longitude, two important changes.

```
* Ibid., vol. 20, p. 148 (1920).
 'Mon. Not. R. Astr. Soc., Geophys. Suppl.,' vol. 2, p. 22 (1928).
# Ibid., vol. 1, p. 541 (1927).
§ Ibid., vol. 2, p. 209 (1929)
 'Proc. Roy. Soc.,' A, vol. 117, p. 692 (1928); vol. 122, p. 228 (1929); vol. 126, p. 1 (1930).
¶ Ibid., vol. 132, p. 689 (1931); vol. 140, p. 241 (1933).
```

but their pole is taken on the equator. Also, all subsidiary functions and constants have now zero dimensions and so are purely numerical. It is therefore necessary to start from the fundamental differential equations, but questions of expansion and of convergence remain as before, and for their treatment reference must be made

TIDES IN OCEANS BOUNDED BY MERIDIANS

to the earlier paper.

The equations are particularized for an ocean of uniform depth bounded by a complete meridian, and the tables give the numerical values of 716 coefficients of these equations. In the computation of these coefficients much assistance has been rendered by the staff of the Liverpool Observatory and Tidal Institute. investigation is carried as far as is practicable without assigning particular values to the depth of the ocean or to the period of the tides.

2—Fundamental Equations

We shall denote by a the radius of the earth, by g the acceleration of gravity at the earth's surface, by Ω the angular speed of the earth's rotation, and by h the depth of the ocean, supposed uniform. Let O and A be two fixed points on the equator so that A is to the east of O, and let P be any variable point of the ocean. Then we shall denote by θ , χ the side OP and the angle AOP respectively of the spherical triangle AOP. Further, we shall denote by ζ the elevation of the free surface of the ocean at any time at P; by u, v the components of the current at any time at P in the directions of OP and a right angle in advance of OP respectively; and by ζ the "equilibrium-form" of ζ corresponding to the disturbing forces.

Then the equation of continuity* may be written in the form

$$\frac{1}{a\sin\theta}\left\{\frac{\partial}{\partial\theta}\left(hu\sin\theta\right)+\frac{\partial}{\partial\chi}\left(hv\right)\right\}+\dot{\zeta}=0, \quad . \quad . \quad . \quad (2.1)$$

and the dynamical equations* as

$$\begin{aligned}
\dot{u} - 2\omega v &= -\frac{g}{a} \frac{\partial}{\partial \theta} \left(\zeta - \overline{\zeta} \right) \\
\dot{v} + 2\omega u &= -\frac{g}{a \sin \theta} \frac{\partial}{\partial \chi} \left(\zeta - \overline{\zeta} \right)
\end{aligned} \right\}, \quad \dots \quad (2.2)$$

where dots denote time-differentiation and

$$\omega = \Omega \sin \theta \sin \chi \quad . \quad (2.3)$$

the component of the earth's angular velocity along the vertical at the point P. We shall work with complex harmonic motion and omit the exponential time-

factor.

* Lamb, "Hydrodynamics," art. 214.

J. PROUDMAN

Let θ' denote co-latitude and χ' east-longitude measured from the central meridian. Then for semidiurnal, diurnal and long period constituents we have* respectively

$$\overline{\zeta} = H \sin^2 \theta' e^{2i\chi'}$$

$$\overline{\zeta} = H \sin 2\theta' e^{i\chi'}$$

$$\overline{\zeta} = H \left(\frac{1}{3} - \cos^2 \theta'\right)$$

$$, \dots \dots (2.4)$$

where H is a constant appropriate to each constituent.

From spherical trigonometry we have

$$\cos \theta' = \sin \theta \sin \chi,$$

$$\cos \theta = \sin \theta' \cos \chi',$$

$$\sin \theta' \sin \chi' = \sin \theta \cos \chi,$$

and then on substituting into (2.4) we obtain respectively

$$\begin{array}{l} \overline{\zeta} = H \; (P_2 + \frac{2}{3} \, i P_2^{\ 1} \cos \chi - \frac{1}{6} \, P_2^{\ 2} \cos 2\chi) \\ \overline{\zeta} = H \; (\frac{2}{3} \, P_2^{\ 1} \sin \chi + \frac{1}{3} \, i P_2^{\ 2} \sin 2\chi) \\ \overline{\zeta} = H \; (\frac{1}{3} \, P_2 + \frac{1}{6} \, P_2^{\ 2} \cos 2\chi) \end{array} \right) \; , \qquad . \; . \; . \; (2.41)$$

where P_r^n denotes Ferrer's form of the Associated Legendre Function of argument $\cos \theta$.

Now it is known[†] that we may take two functions of position and time, ϕ and ψ , satisfying the conditions

$$\frac{\partial \phi}{\partial n}=0, \qquad \psi=0, \qquad \ldots \qquad (2.5)$$

at the coastline, where $\partial/\partial n$ denotes differentiation along a normal to the coastline, and such that

$$\frac{u}{a} = -\frac{\partial \dot{\phi}}{\partial \theta} - \frac{1}{\sin \theta} \frac{\partial \dot{\phi}}{\partial \chi}$$

$$\frac{v}{a} = -\frac{1}{\sin \theta} \frac{\partial \dot{\phi}}{\partial \chi} + \frac{\partial \dot{\phi}}{\partial \theta}$$
 $, \dots \dots \dots (2.6)$

over the ocean. We notice from (2.6) that ϕ and ψ are of zero dimensions. It follows from (2.1) that

$$\frac{\zeta}{h} = \frac{1}{\sin \theta} \left\{ \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \phi}{\partial \theta} \right) + \frac{1}{\sin \theta} \frac{\partial^2 \phi}{\partial \chi^2} \right\}, \quad (2.7)$$

over the ocean.

- * Lamb, "Hydrodynamics." Appendix to chap. VIII.
- † PROUDMAN, 'Proc. Lond. Math. Soc.,' vol. 18, p. 1 (1916).

3—Transformation of Equations

We now take two sequences of functions of position ϕ_r , ψ_r , and two sequences of corresponding constants λ_r , μ_r , all independent of time and of zero dimensions. They are defined so as to satisfy the differential equations

TIDES IN OCEANS BOUNDED BY MERIDIANS

$$\frac{1}{\sin \theta} \left\{ \frac{\partial}{\partial \theta} \left(\sin \theta \, \frac{\partial \phi_r}{\partial \theta} \right) + \frac{1}{\sin \theta} \frac{\partial^2 \phi_r}{\partial \chi^2} \right\} + \lambda_r \phi_r = 0 \\
\frac{1}{\sin \theta} \left\{ \frac{\partial}{\partial \theta} \left(\sin \theta \, \frac{\partial \psi_r}{\partial \theta} \right) + \frac{1}{\sin \theta} \frac{\partial^2 \psi_r}{\partial \chi^2} \right\} + \mu_r \psi_r = 0 \\
, \dots (3.1)$$

over the ocean, with the conditions

$$\frac{\partial \phi_r}{\partial n} = 0, \qquad \psi_r = 0, \ldots \ldots \ldots \ldots \ldots (3.2)$$

at the coastline. The functions ϕ , and ψ , are each subject to arbitrary constant factors, but we may deduce* that

In (3.3) and (3.4) and in all the double integrals that follow, the integrations are to be taken over the whole area of the ocean. The quantities L, and M, are, of course, independent both of position and of time, while the arbitrary factors disappear from the ratios ϕ_r/L_r and ψ_r/M_r .

Let us arrange the sequences (λ_r) and (μ_r) in non-decreasing order of magnitude with $r = 1, 2, 3, \ldots$ and use the expansions

$$\phi = \sum_{s=1}^{\infty} \frac{p_s}{L_s} \phi_s, \qquad \psi = \sum_{s=1}^{\infty} \frac{p_{-s}}{M_s} \psi_s \qquad \ldots \qquad (3.5)$$

where p_s and p_{-s} are numerical functions of time but not of position. Corresponding to any definite tidal motion the series in (3.5) are known to be absolutely and

^{*} Proudman, 'Proc. Lond. Math. Soc.,' vol. 18, p. 1 (1916).

J. PROUDMAN

uniformly convergent over the whole ocean. On substituting into (2.7) and using (3.1) we have

$$\frac{\zeta}{h} = -\sum_{s=1}^{\infty} \frac{\lambda_s p_s}{L_s} \phi_s, \quad \dots \qquad (3.51)$$

but this series cannot converge nearly so rapidly as the first of (3.5).

It is now our object to derive equations in which the only variables are functions of time. For this purpose we construct the integral

$$\iint \left\{ \left[-\frac{\partial \ddot{\phi}}{\partial \theta} - \frac{1}{\sin \theta} \frac{\partial \ddot{\psi}}{\partial \chi} - 2\Omega \sin \theta \sin \chi \left(-\frac{1}{\sin \theta} \frac{\partial \dot{\phi}}{\partial \chi} + \frac{\partial \dot{\psi}}{\partial \theta} \right) \right. \\
\left. + g \frac{\partial}{\partial \theta} \left(\zeta - \overline{\zeta} \right) \right]^{2} \\
+ \left[-\frac{1}{\sin \theta} \frac{\partial \ddot{\phi}}{\partial \chi} + \frac{\partial \ddot{\psi}}{\partial \theta} + 2\Omega \sin \theta \sin \chi \left(-\frac{\partial \dot{\phi}}{\partial \theta} - \frac{1}{\sin \theta} \frac{\partial \dot{\psi}}{\partial \chi} \right) \right. \\
\left. + \frac{g}{\sin \theta} \frac{\partial}{\partial \chi} \left(\zeta - \zeta \right) \right]^{2} \right\} \sin \theta \, d\theta \, d\chi. \quad \dots \quad \dots \quad (3.6)$$

which is suggested by the equations of motion (2.2) after substituting from (2.6). Now substitute the finite series

$$\phi = \sum_{s=1}^{N} \frac{p_s}{L_s} \phi_s$$
, $\psi = \sum_{s=1}^{N'} \frac{p_{-s}}{M_s} \psi_s$

into (3.6) and proceed to choose

$$\ddot{p}_1, \ddot{p}_2 \ldots \ddot{p}_N; \ddot{p}_{-1}, \ddot{p}_{-2} \ldots \ddot{p}_{-N}$$

so as to make the integral (3.6) a minimum for given values of

$$p_1, p_2 \dots p_N;$$
 $\dot{p}_1, \dot{p}_2, \dots \dot{p}_N; \dot{p}_{-1}, \dot{p}_{-2}, \dots \dot{p}_{-N'}.$

We thus obtain the equations

$$\ddot{p}_r + 2\Omega \sum_{s=-N'}^{N} \beta_{r,s} \dot{p}_s + \frac{gh\lambda_r}{a^2} (p_r - \Pi_r) = 0, \quad . \quad . \quad . \quad (3.7)$$

where

$$\Pi_{r} = -\frac{1}{hL_{r}} \iint \overline{\zeta} \phi, \sin \theta \ d\theta \ d\chi, \quad \ldots \quad (3.71)$$

and

$$\beta_{r,s} = -\frac{1}{L_r L_s} \iint \left(\frac{\partial \phi_r}{\partial \theta} \frac{\partial \phi_s}{\partial \chi} - \frac{\partial \phi_r}{\partial \chi} \frac{\partial \phi_s}{\partial \theta} \right) \sin \theta \sin \chi \ d\theta \ d\chi, \quad . \quad . \quad (3.72)$$

$$\beta_{r,-s} = \frac{1}{L_r M_s} \iint \left(\sin^2 \theta \, \frac{\partial \phi_r}{\partial \theta} \, \frac{\partial \psi_s}{\partial \theta} + \frac{\partial \phi_r}{\partial \chi} \, \frac{\partial \psi_s}{\partial \chi} \right) \sin \theta \, d\theta \, d\chi, \quad . \quad . \quad . \quad (3.73)$$

for positive values of r and s; also

279

where

$$\beta_{-r,s} = -\frac{1}{M_r L_s} \iint \left(\sin^2 \theta \, \frac{\partial \psi_r}{\partial \theta} \frac{\partial \phi_s}{\partial \theta} + \frac{\partial \psi_r}{\partial \chi} \frac{\partial \phi_s}{\partial \chi} \right) \sin \chi \, d\theta \, d\chi, \quad . \quad . \quad (3.81)$$

$$\beta_{-r,-s} = -\frac{1}{M_r M_s} \iint \left(\frac{\partial \psi_r}{\partial \theta} \frac{\partial \psi_s}{\partial \chi} - \frac{\partial \psi_r}{\partial \chi} \frac{\partial \psi_s}{\partial \theta} \right) \sin \theta \sin \chi \ d\theta \ d\chi, \quad . \quad . \quad (3.82)$$

for positive values of r and s. The coefficients

$$\beta_{r,s}$$
, $\beta_{r,-s}$, $\beta_{-r,s}$, $\beta_{-r,-s}$

are numerical constants, while the quantities Π_r are numerical functions of time. The equations (3.7) and (3.8) are of the type of Lagrangian equations of motion, while the quantities II, are Lagrangian components of the disturbing forces.

For a complex harmonic constituent of period $2\pi/\sigma$ we suppose that the time enters only through an exponential factor, and then from (3.7) and (3.8) we have

$$\left(1 - \frac{f^2 \beta}{\lambda_r}\right) p_r + \frac{i f \beta}{\lambda_r} \sum_{s=1}^{N} \beta_{r,s} p_s + \frac{i f \beta}{\lambda_r} \sum_{t=1}^{N'} \beta_{r,-t} p_{-t} = \Pi_r \quad . \quad . \quad (3.91)$$

$$if p_{-r} + \sum_{s=1}^{N} \beta_{-r,s} p_s + \sum_{t=1}^{N'} \beta_{-r,-t} p_{-t} = 0$$
 (3.92)

where

$$f = \frac{\sigma}{2\Omega}$$
, $\beta = \frac{4\Omega^2 a^2}{gh}$ (3.93)

and r, s, t, are positive integers. The constants f and β are of zero dimensions.

Corresponding to any definite tidal motion the series in (3.91) and (3.92) are known to be absolutely convergent as N, N' $\rightarrow \infty$.

4—Ocean Bounded by a Complete Meridian

For the hemispherical ocean bounded by the complete meridian $\theta = \frac{1}{2}\pi$, the functions ϕ_r and ψ_r satisfying the equations (3.1) may each be either

$$P_{r}^{n} (\cos \theta) \cos n\chi$$
 or $P_{r}^{n} (\cos \theta) \sin n\chi$

) denotes an Associated Legendre Function (Ferrer's Form), and $r=1,\,2,\,3,\,\ldots$; while $n=0,\,1,\,2,\,\ldots r$, in those functions containing $\cos n\chi$ and $n=1, 2, \ldots, r$, in those functions containing sin $n\chi$. In virtue of the boundary conditions (3.2), r + n is even in ϕ_r and odd in ψ_r .

It is therefore clear that ϕ_r , ψ_r and all the quantities

$$p_r$$
, p_{-r} , Π_r , λ_r , μ_r , L_r , M_r , $\beta_{r,s}$,

J. PROUDMAN

must be replaced by ϕ_r^n , ψ_r^n and

$$p_r^n, p_{-r}^n, \Pi_r^n, \lambda_r^n, \mu_r^n, L_r^n, M_r^n, \beta_{r,s}^{n,m}$$

respectively. We then find that

$$\mathbf{L}_{r}^{n} = \mathbf{M}_{r}^{n} = \left\{ \pi \, \frac{r \, (r+1)}{2r+1} \frac{(r+n)!}{(r-n)!} \right\}^{\frac{1}{2}} \, (n>0), \qquad (4.2)$$

$$L_r^{\circ} = M_r^{\circ} = \left\{ 2\pi \, \frac{r \, (r+1)}{2r+1} \right\}^{\frac{1}{2}}.$$
 (4.21)

For the evaluation of the coefficients $\beta_{r,s}^{n,m}$ from (3.72), (3.73), (3.81), (3.82) we notice that

$$\int_0^{2\pi} \cos m\chi \cos n\chi \sin \chi \, d\chi = 0,$$

$$\int_0^{2\pi} \sin m\chi \sin n\chi \sin \chi \, d\chi = 0,$$

and

$$\int_0^{2\pi} \cos m\chi \sin n\chi \sin \chi \ d\chi = 0, \quad (m \neq n \pm 1).$$

Further, we notice that

$$\int_0^{2\pi} \cos n\chi \sin (n+1) \chi \sin \chi \, d\chi = \pi \quad (n=0), \quad = \frac{1}{2}\pi \quad (n>0),$$
while
$$\int_0^{2\pi} \sin n\chi \cos (n+1) \chi \sin \chi \, d\chi = 0 \quad (n=0), \quad = -\frac{1}{2}\pi \quad (n>0).$$

$$\int_0^{\pi} \sin n\chi \cos (n+1) \chi \sin \chi \, d\chi = 0 \quad (n=0), \quad = -\frac{1}{2}\pi \quad (n>0)$$

We are thus led to two integrals which we shall call $\alpha_{r,s}$ and $\gamma_{r,s}$, viz.*

$$\alpha_{r,s}^{n} = \frac{\frac{1}{2}\pi}{L_{r}^{n}L_{s}^{n+1}} \int_{0}^{\frac{1}{2}\pi} \left\{ nP_{r}^{n} \frac{dP_{s}^{n+1}}{d\theta} + (n+1) \frac{dP_{r}^{n}}{d\theta} P_{s}^{n+1} \right\} \sin \theta \ d\theta, \quad . \quad . \quad (4.31)$$

for odd values of r + s, and

$$\gamma_{r,s}^{n} = \frac{\frac{1}{2}\pi}{L^{n}M^{n+1}} \int_{0}^{\frac{1}{2}\pi} \left\{ n (n+1) P_{r}^{n}P_{s}^{n+1} + \sin^{2}\theta \frac{dP_{r}^{n}}{d\theta} \frac{dP_{s}^{n+1}}{d\theta} \right\} d\theta, \quad (4.32)$$

for even values of r + s, except that when n = 0, these expressions must be doubled.

* When the argument of P_r^n () is the variable $\cos \theta$ or x we shall omit it.

It will be convenient to divide any solution of the tidal equations into two parts, in the first of which ζ is an even function of χ and in the second of which ζ is an odd function of χ . It will also be convenient to refer to these respectively as the even and odd parts of the solution. Then we deduce that in the even part of the solution ϕ_r^n will occur only in the form P_r^n cos $n\chi$ and ψ_r^n only in the form P_r^n sin $n\chi$, while in the odd part of the solution ϕ_r^n will occur only in the form P_r^n sin $n\chi$ and ψ_r^n only in the form P_r^n cos $n\chi$.

On using only positive values of r and s, as in (3.72), (3.73), (3.81) and (3.82), we now have

$$\beta_{r,s}^{n,n+1} = \beta_{-r,-s}^{n,n+1} = \alpha_{r,s}^{n,n+1}, \quad \beta_{r,s}^{n+1,n} = \beta_{-r,-s}^{n+1,n} = -\alpha_{s,r}^{n,n+1}, \quad (4.41)$$

$$\beta_{r,-s}^{n,n+1} = \beta_{-r,s}^{n,n+1} = \pm \gamma_{r,s}^{n,n}, \qquad \beta_{r,-s}^{n+1,n} = \beta_{-r,s}^{n+1,n} = \mp \gamma_{s,r}^{n,n}, \quad (4.42)$$

where the upper signs apply to the even part of the solution and the lower signs to the odd part of the solution. But in the even part of the solution we must take

$$\beta_{-r,-s}^{0,1} = \beta_{-r,-s}^{1,0} = \beta_{-r,s}^{0,1} = \beta_{r,-s}^{1,0} = 0 \quad . \quad . \quad . \quad . \quad (4.43)$$

281

instead of (4.41) and (4.42), while in the odd part of the solution we must take

$$\beta_{r,s}^{0,1} = \beta_{r,s}^{1,0} = \beta_{r,-s}^{0,1} = \beta_{-r,s}^{1,0} = 0$$
 (4.44)

instead of (4.41) and (4.42).

From (3.71) we have

$$\Pi_r^n = -\frac{1}{h L_r^n} \iint \overline{\zeta} \phi_r^n \sin \theta \ d\theta \ d\chi, \quad . \quad . \quad . \quad . \quad . \quad (4.5)$$

and on substituting from (2.41) and from the present section, we have

$$\Pi_{2}^{0} = -\sqrt{\frac{\pi}{15}} \frac{H}{h}, \quad \Pi_{2}^{1} = i\sqrt{\pi} Q, \frac{H}{h}, \quad \Pi_{2}^{2} = \frac{1}{3} \sqrt{\frac{\pi}{5}} \frac{H}{h}, \quad (4.51)$$

for the semidiurnal constituents,

$$\Pi_{r}^{1} = \sqrt{\pi} \, Q_{r} \frac{H}{h}, \quad \Pi_{2}^{2} = -\frac{2}{3} i \, \sqrt{\frac{\pi}{5} \frac{H}{h}}, \quad \dots \quad (4.52)$$

for the diurnal constituents, and

$$\Pi_{2}{}^{0} = -\frac{1}{3}\sqrt{\frac{\pi}{15}}\frac{H}{h}, \quad \Pi_{2}{}^{2} = -\frac{1}{3}\sqrt{\frac{\pi}{5}}\frac{H}{h}, \quad . \quad . \quad . \quad (4.53)$$

for the long period constituents. Here

$$Q_{r} = \frac{2(-\frac{1}{2})^{\frac{1}{2}(r-1)}}{\{\frac{1}{2}(r-1)\}!} \frac{1, 3, \dots r}{(r-2)(r)(r+1)(r+3)} \sqrt{(2r+1)}, \dots (4.54)$$

for odd values of r; and all other values of Π^n , are zero.

J. PROUDMAN

5—FORMULAE IN ASSOCIATED LEGENDRE FUNCTIONS

In this section and the next we shall use the relationships

$$P_r^n = (1 - x^2)^{\frac{1}{2}n} \frac{d^n P_r}{dx^n}, \qquad (5.11)$$

$$\frac{d}{d\theta}\left(\sin\theta\,\frac{d\mathbf{P}_r^n}{d\theta}\right) + \left\{r\,(r+1)\,\sin\theta\,-\frac{n^2}{\sin\theta}\right\}\,\mathbf{P}_r^n = 0, \ldots (5.12)$$

$$\frac{d}{dx}\left\{(1-x^2)^n\frac{d^n\mathbf{P}_r}{dx^n}\right\}+(r-n+1)(r+n)(1-x^2)^{n-1}\frac{d^{n-1}\mathbf{P}_r}{dx^{n-1}}=0, . (5.13)$$

$$\sin \theta \frac{d\mathbf{P}_r^n}{d\theta} = n \cos \theta \, \mathbf{P}_r^n - \sin \theta \, \mathbf{P}_r^{n+1}, \qquad (5.14)$$

$$(2r+1)\sin\theta P_r^{n-1}=P_{r+1}^{n}-P_{r-1}^{n},\ldots\ldots (5.15)$$

$$(2r+1)\cos\theta P_r^n = (r-n+1)P_{r+1}^n + (r+n)P_{r-1}^n, \dots (5.16)$$

$$\mathbf{P}_{r}^{n}(0) = \left(-\frac{1}{2}\right)^{\frac{1}{2}(r-n)} \frac{1, 3, \dots (r+n-1)}{\left\{\frac{1}{2}(r-n)\right\}!} \qquad (r+n \text{ even}). \quad . \quad (5.17)$$

We now proceed to deduce formulae for the evaluation of the integrals

$$\int_0^{\frac{1}{2}\pi} \sin \theta \cos \theta \, P_r^n P_s^n \, d\theta, \qquad \int_0^{\frac{1}{2}\pi} \sin^2 \theta \, P_r^{n-1} P_s^n \, d\theta,$$

and

$$\int_0^{\frac{1}{2}\pi} \sin \theta \, P_r^n P_s^n \, d\theta,$$

which, as will be seen in the next section, arise in the evaluation of $\alpha_{r,s}$ and $\gamma_{r,s}$.

On using (5.16) we have

$$\int_{0}^{\frac{1}{n}} \sin \theta \cos \theta \, P_{r}^{n} P_{s}^{n} \, d\theta$$

$$= \frac{r - n + 1}{2r + 1} \int_{0}^{\frac{1}{n}} \sin \theta \, P_{r+1}^{n} P_{s}^{n} \, d\theta + \frac{r + n}{2r + 1} \int_{0}^{\frac{1}{n}} \sin \theta \, P_{r-1}^{n} P_{s}^{n} \, d\theta, \quad (5.2)$$

and on using (5.15) we have

$$\int_0^{\frac{1}{2}\pi} \sin^2\theta \ P_r^{n-1} P_s^n \ d\theta = \frac{1}{2r+1} \int_0^{\frac{1}{2}\pi} \sin\theta \ P_{r+1}^{n} P_s^n \ d\theta - \frac{1}{2r+1} \int_0^{\frac{1}{2}\pi} \sin\theta \ P_{r-1}^{n} P_s^n \ d\theta. \ . \ \ (5.3)$$

Now

$$\int_{0}^{1} (1 - x^{2})^{n+1} \frac{d^{n+1}P_{r}}{dx^{n+1}} \frac{d^{n+1}P_{s}}{dx^{n+1}} dx
= \left[(1 - x^{2})^{n+1} \frac{d^{n+1}P_{r}}{dx^{n+1}} \frac{d^{n}P_{s}}{dx^{n}} \right]_{0}^{1} - \int_{0}^{1} \frac{d}{dx} \left\{ (1 - x^{2})^{n+1} \frac{d^{n+1}P_{r}}{dx^{n+1}} \right\} \frac{d^{n}P_{s}}{dx} dx
= - P_{r}^{n+1} (0) P_{s}^{n} (0) + (r - n) (r + n + 1) \int_{0}^{1} (1 - x^{2})^{n} \frac{d^{n}P_{r}}{dx^{n}} \frac{d^{n}P_{s}}{dx^{n}} dx,$$

on using (5.13); hence and similarly

$$\int_{0}^{\frac{1}{2}\pi} \sin \theta \, P_{r}^{n+1} P_{s}^{n+1} \, d\theta$$

$$= -P_{r}^{n+1} (0) P_{s}^{n} (0) + (r-n) (r+n+1) \int_{0}^{\frac{1}{2}\pi} \sin \theta \, P_{r}^{n} P_{s}^{n} \, d\theta$$

$$= -P_{s}^{n+1} (0) P_{r}^{n} (0) + (s-n) (s+n+1) \int_{0}^{\frac{1}{2}\pi} \sin \theta \, P_{s}^{n} P_{r}^{n} \, d\theta,$$

so that

$$\int_{0}^{\frac{1}{2}\pi} \sin \theta \ P_{r}^{n} P_{s}^{n} d\theta = \frac{P_{r}^{n+1} (0) \ P_{s}^{n} (0) - P_{r}^{n} (0) \ P_{s}^{n+1} (0)}{(r-s) (r+s+1)} . \quad . \quad . \quad (5.4)$$

When r + n or s + n + 1 is even (5.4) reduces to

$$-\frac{P_r^n(0) P_s^{n+1}(0)}{(r-s) (r+s+1)}, \ldots (5.41)$$

283

and when r + n or s + n + 1 is odd it reduces to

$$\frac{P_{s}^{n+1}(0) P_{s}^{n}(0)}{(r-s)(r+s+1)}. \qquad (5.42)$$

We shall also require the values of the ratios

$$\frac{P_r^{n+2}(0)}{P_r^{n}(0)}$$
, $\frac{P_{r+1}^{n+1}(0)}{P_r^{n}(0)}$, $\frac{P_{r-1}^{n+1}(0)}{P_r^{n}(0)}$, $(r+n \text{ even})$

and on using (5.17) we see that these are respectively

$$-(r-n)(r+n+1), r+n+1, -(r-n).$$
 (5.5)

6—EVALUATION OF
$$\alpha_{r,s}^{n}$$
, $\gamma_{r,s}^{n}$

From (4.31) we deduce, with the help of (5.14) that

$$\alpha_{r,s}^{n} = \frac{\frac{1}{2}\pi}{L_{r}^{n}L_{s}^{n+1}} \left\{ nP_{r}^{n} (0) P_{s}^{n+1} (0) - \int_{0}^{\frac{1}{2}\pi} \sin \theta P_{r}^{n+1}P_{s}^{n+1} d\theta \right\}, \quad (6.1)$$

except that when n = 0 this expression must be doubled. On substituting from (5.41), (5.42) and (5.5) we have

$$\alpha_{r, s}^{n} = \frac{1}{2}\pi \frac{\mathbf{P}_{r}^{n}(0)}{\mathbf{L}_{r}^{n}} \frac{\mathbf{P}_{s}^{n+1}(0)}{\mathbf{L}_{s}^{n+1}} \left\{ n + \frac{(r-n)(r+n+1)}{(r-s)(r+s+1)} \right\}, \quad . \quad . \quad (6.11)$$

when r + n and s + n + 1 are even, and

$$\alpha_{r,s}^{n} = \frac{1}{2}\pi \frac{\mathbf{P}_{r}^{n+1}(0)}{\mathbf{L}_{r}^{n}} \frac{\mathbf{P}_{s}^{n+2}(0)}{\mathbf{L}_{s}^{n+1}} \frac{1}{(r-s)(r+s+1)}, \quad . \quad . \quad . \quad (6.12)$$

J. PROUDMAN

when r + n and s + n + 1 are odd, except that when n = 0 both (6.11) and (6.12) must be doubled.

On multiplying (5.12) by $\sin \theta P_s^{n+1}$ and integrating, we have

$$\int_{0}^{\frac{1}{2}\pi} \{r \ (r+1) \sin^{2}\theta - n^{2}\} \ P_{r}^{n} P_{s}^{n+1} \ d\theta
= -\int_{0}^{\frac{1}{2}\pi} \frac{d}{d\theta} \left(\sin \theta \frac{dP_{r}^{n}}{d\theta} \right) \sin \theta \ P_{s}^{n+1} \ d\theta
= P_{r}^{n+1} (0) \ P_{s}^{n+1} (0) + \int_{0}^{\frac{1}{2}\pi} \sin \theta \frac{dP_{r}^{n}}{d\theta} \frac{d}{d\theta} \left(\sin \theta \ P_{s}^{n+1} \right) \ d\theta,$$

and the integral in this is equal to

$$\int_{0}^{\frac{1}{4}\pi} \left\{ \sin \theta \cos \theta \frac{d\mathbf{P}_{r}^{n}}{d\theta} \mathbf{P}_{s}^{n+1} + \sin^{2} \theta \frac{d\mathbf{P}_{r}^{n}}{d\theta} \frac{d\mathbf{P}_{s}^{n+1}}{d\theta} \right\} d\theta
= \int_{0}^{\frac{1}{4}\pi} \left\{ n \cos^{2} \theta \mathbf{P}_{r}^{n} \mathbf{P}_{s}^{n+1} - \sin \theta \cos \theta \mathbf{P}_{r}^{n+1} \mathbf{P}_{s}^{n+1} + \sin^{2} \theta \frac{d\mathbf{P}_{r}^{n}}{d\theta} \frac{d\mathbf{P}_{s}^{n+1}}{d\theta} \right\} d\theta.$$

It follows that

$$\int_{0}^{\frac{1}{2}\pi} \left\{ n \; (n+1) \; \mathbf{P}_{r}^{n} \mathbf{P}_{s}^{n+1} + \sin^{2} \theta \, \frac{d\mathbf{P}_{r}^{n}}{d\theta} \, \frac{d\mathbf{P}_{s}^{n+1}}{d\theta} \right\} d\theta = - \; \mathbf{P}_{r}^{n+1} \; (0) \; \mathbf{P}_{s}^{n+1} \; (0)$$

$$+ \int_{0}^{\frac{1}{2}\pi} \left\{ \left[r \; (r+1) + n \right] \sin^{2} \theta \; \mathbf{P}_{r}^{n} \mathbf{P}_{s}^{n+1} + \sin \theta \; \cos \theta \; \mathbf{P}_{r}^{n+1} \mathbf{P}_{s}^{n+1} \right\} d\theta,$$

and so, from (4.32)

$$\gamma_{r,s}^{n} = \frac{\frac{1}{2}\pi}{L_{r}^{n}M_{s}^{n+1}} \left\{ -P_{r}^{n+1} (0) P_{s}^{n+1} (0) + [r(r+1)+n] \int_{0}^{\frac{1}{2}\pi} \sin^{2}\theta P_{r}^{n}P_{s}^{n+1} d\theta + \int_{0}^{\frac{1}{2}\pi} \sin\theta \cos\theta P_{r}^{n+1}P_{s}^{n+1} d\theta \right\}, \quad (6.2)$$

except that when n=0 this expression must be doubled. On substituting from (5.2) and (5.3) we have

$$\gamma_{r,s}^{n} = \frac{\frac{1}{2}\pi}{L_{r}^{n}M_{s}^{n+1}} \left\{ -P_{r}^{n+1} (0) P_{s}^{n+1} (0) + \frac{r(r+2)}{2r+1} \int_{0}^{\frac{1}{2}\pi} \sin \theta P_{r+1}^{n+1} P_{s}^{n+1} d\theta - \frac{r^{2}-1}{2r+1} \int_{0}^{\frac{1}{2}\pi} \sin \theta P_{r-1}^{n+1} P_{s}^{n+1} d\theta \right\}, \quad (6.21)$$

and then on substituting from (5.41), (5.42), and (5.5) we have, after some reduction,

$$\gamma_{r,s}^{n} = -\frac{1}{2}\pi \frac{P_{r}^{n}(0)}{L_{r}^{n}} \frac{P_{s}^{n+2}(0)}{M_{s}^{n+1}}.$$

$$\cdot \left\{ \frac{(r-1)(r+2)[r(r+1)-n]-s(s+1)[r(r+1)+n]}{(r-s-1)(r-s+1)(r+s)(r+s+2)} \right\}, \quad (6.31)$$

when r + n and s + n are even, and

$$\gamma_{r,s}^{n} = -\frac{1}{2}\pi \frac{\mathbf{P}_{r}^{n+1}(0)}{\mathbf{L}_{r}^{n}} \frac{\mathbf{P}_{s}^{n+1}(0)}{\mathbf{M}_{s}^{n+1}} \cdot \left\{ 1 - \frac{(r-1)(r+2)[r(r+1) - (n+1)] - s(s+1)[r(r+1) + (n+1)]}{(r-s-1)(r-s+1)(r+s)(r+s+2)} \right\},$$
(6.32)

when r + n and s + n are odd, except that when n = 0 both (6.31) and (6.32) must be doubled.

The following tables give numerical values of such of the coefficients $\alpha_{r,s}$ and $\gamma_{r, s}^{n}$ as are required in the applications.

TABLE I

				$\alpha_{r,s}^{n}$.			
n	r	s = 1	3	5	7	9	11
	2	-0.41926	-0.10674	0.01673	-0.00586	0.00275	-0.00151
0	4	0.17116	-0.14707	-0.07374	0.01495	-0.00606	0.00312
	6	-0.11179	0.05692	-0.08919	-0.05580	0.01282	-0.00564
	8	0.08369	-0.03729	0.03339	-0.06396	-0.04479	0.01109
	10	-0.06707	0.02822	-0.02167	0.02343	-0.04984	-0.03739
	12	$0\!\cdot\!05602$	-0.02288	0.01639	-0.01507	0.01799	-0.04082
	2	·	0.23868	-0.12516	0.08789	-0.06820	0.05585
2	4		-0.21228	0.01781	-0.03358	0.02911	-0.02483
	6		$0 \cdot 12170$	-0.09972	-0.00800	-0.01358	0.01424
	8		-0.08918	0.05388	-0.06488	-0.01370	-0.00606
	10		0.07092	-0.04009	0.03349	-0.04766	-0.01478
	12	,	-0.05902	0.03246	-0.02501	0.02369	-0.03746
	4			0.21074	-0.12194	0.09034	-0.07255
4	6			-0.17098	0.04119	-0.04450	0.03789
	8			0.11119	-0.08905	0.01011	-0.02290
	10			-0.08605	0.05505	-0.06118	-0.00053
	12			0.07077	-0.04321	0.03620	-0.04636
	6				0 · 18778	-0.11413	0.08727
6	8				-0.14667	0.04906	-0.04761
	10				0.10194	-0.08024	0.01899
	12				-0.08150	0.05361	-0.05703
	8					$0 \cdot 17044$	-0.10672
8	10					-0.13033	0.05170
	12	,				0.09440	-0.07330
10	10						0.15698
	12						-0.11841

J. PROUDMAN

TABLE II

				$\alpha_{r,s}^{n}$.			_
n	r	s = 2	4	6	8	10	12
	1	0.24206	-0.11482	0.07714	-0.05835	0.04699	-0.03936
1	3	-0.24650	-0.01096	-0.01964	0.01857	-0.01611	0.01399
	5	0.12553	-0.10444	-0.02462	-0.00466	0.00731	-0.00733
	7	-0.08796	0.05015	-0.06546	-0.02421	0.00000	0.00316
	9	0.06821	-0.03567	0.03008	-0.04729	-0.02199	0.00181
	11	-0.05585	0.02818	-0.02142	0.02098	-0.03687	-0.01974
	3		0.22465	-0.12498	0.09051	-0.07159	0.05941
3	5		-0.18849	0.03277	-0.04068	0.03473	-0.02967
	7		0.11643	-0.09424	0.00278	-0.01920	0.01867
	9		-0.08803	0.05506	-0.06322	-0.00614	-0.01029
	11		0.07134	-0.04224	0.03530	-0.04721	-0.00927
+	5			0 · 19844	-0.11810	0.08904	-0.07238
5	7			-0.15747	0.04613	-0.04656	0.03970
	9			0.10634	-0.08438	0.01527	-0.02539
	11			-0.08380	0.05448	-0.05908	0.00374
	. 7			State of the state	0 · 17852	-0.11031	0.08531
7	9				-0.13779	0.05077	-0.04804
	11				0.09798	-0.07657	0.02171
-	9				0 00.00	0.16331	-0.10337
9	11					-0.12395	0.05214
						-0.12000	
11	11			77 TIT		*	0.15132
				TABLE III			
				$\alpha_{r,s}^n$.			
n	r	s = 2	4	6	8	10	12
	1	-0.24206	0.05413	-0.02439	0.01395	-0.00904	0.00634
0	3	-0.15095	-0.11392	0.03043	-0.01522	0.00932	-0.00635
	5	0.03740	-0.09032	-0.07538	0.02155	-0.01132	0.00719
	7	-0.01790	0.02502	-0.06443	-0.05641	0.01672	-0.00903
	9	0.01064	-0.01285	0.01877	-0.05008	-0.04508	0.01366
	11	-0.00709	0.00803	-0.01000	0.01501	-0.04096	-0.03755
	3		-0.06485	0.01863	-0.00954	0.00591	-0.00404
2	5		-0.05441	-0.04885	0.01429	-0.00759	0.00485
	7.		0.01532	-0.04244	-0.03803	0.01139	-0.00619
	9	*	-0.00792	0.01245	-0.03400	-0.03093	0.00943
	11		0.00497	-0.00666	0.01023	-0.02820	-0.02601
	5		***************************************	-0.03623	0.01152	-0.00630	0.00408
4	7			-0.03409	-0.03321	0.01024	-0.00564
	9			0.01027	-0.03050	-0.02857	0.00883
	11			-0.00557	0.00929	-0.02699	-0.02466
	7			-	-0.02386	0.00802	-0.00456
6	9				-0.02387	-0.02438	0.00778
J	11	•			0.00750	-0.02321	-0.02239
8	9					-0.01721	0.00600
G	11					-0.01721 -0.01789	-0.01886
10			Water and the Transport of the Control of the Contr			0 01700	
10	11						-0.01317

287

TABLE IV

				IADLE IV			
				$\alpha_{r,s}^{n}$.			
n	r	s = 1	3	5	7	9	. 11
	2		-0.09744	0.02555	-0.01243	0.00744	-0.00498
1	4		-0.07353	-0.06170	0.01737	-0.00898	0.00563
	6		0.01964	-0.05150	-0.04474	0.01312	-0.00702
	8		-0.00983	0.01472	-0.03917	-0.03502	0.01054
	10		0.00602	-0.00773	0.01161	-0.03152	-0.02874
	12	* *	-0.00410	0.00491	-0.00627	0.00955	-0.02635
	4		,	-0.04712	0.01437	-0.00764	0.00485
3	6			-0.04231	-0.03981	0.01200	-0.00650
	8			0.01238	-0.03568	-0.03276	0.00998
	10			-0.00657	0.01069	-0.02981	-0.02752
	12		1	0.00420	-0.00580	0.00909	-0.02538
	6				-0.02897	0.00951	-0.00531
5	8				-0.02823	-0.02824	0.00887
	10				0.00870	-0.02645	-0.02517
	12				-0.00479	0.00818	-0.02354
	8					-0.02009	0.00689
7	10					-0.02052	-0.02133
	12					0.00654	-0.02057
9	10						-0.01497
	12						-0.01578
				Table V			
				$\gamma_{r,s}^{n}$.			
n	r	s = 2	4	6	8	10	12
	2	0.18042	0.24206	-0.06909	0.03535	-0.02187	0.01497
0	${f 4}$	-0.33146	0.10006	0.26723	-0.08595	0.04708	-0.03052
-	6	0.16356	-0.32271	0.06926	0.27720	-0.09435	0.05362
	8	-0.11524	0.15099	-0.31757	0.05296	0.28254	-0.09942
	10	0.09012	-0.10561	$0 \cdot 14397$	-0.31431	0.04287	0.28586
	12	-0.07433	0.08277	-0.09977	0.13954	-0.31206	0.03601
	2		$0 \cdot 27732$	-0.07967	0.04080	-0.02525	0.01729
2	4		0.19074	0.23620	-0.07257	0.03923	-0.02528
	6		-0.17676	0.14056	0.22753	-0.07393	0.04143
	8		0.09072	-0.19205	0.10961	0.22369	-0.07550
	10		-0.06471	0.09344	-0.19799	0.08952	0.22147
	12		0.05108	-0.06585	0.09302	-0.20117	0.07556
	4			0.32109	-0.10214	0.05580	-0.03614
4	6			0.21905	0.26519	-0.08480	0.04739
	8			-0.15093	0.17804	0.24981	-0.08219
	10			0.07888	-0.17089	$0 \cdot 14712$	0.24187
	12			-0.05623	0.08514	-0.18036	0.12480
	6				0.34140	-0.11483	0.06526
6	. 8				0.23421	0.28189	-0.09253
	10				-0.13617	0.20130	0.26436
	12				0.07192	-0.15706	$0 \cdot 17260$
	8					0.35324	-0.12308
8	10					$0 \cdot 24357$	0.29280
_	12					-0.12660	0.21711
10	10						0.36101
	12						0.24989

288

J. PROUDMAN

- 1	'Α	B	LF	: 1	V	1
	- 4 4			4	•	-

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					I ADLE VI			•
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					γ_r, s^n .			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	n	r	s = 1	3		7	9	11
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1		0.22643	-0.05937	0.02888	-0.01729	0.01156
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	3		0.16573				-0.02110
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		5		-0.19872	0.11179	0.21125		0.03782
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		7		0.10047	-0.20743	0.08335	0.21144	-0.07154
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		9		-0.07144	0.09926	-0.20980		0.21162
3 5 0.20737 0.25296 -0.07948 7 -0.16180 0.16177 0.23998 9 0.08391 -0.18024 0.13034 11 -0.05988 0.08885 -0.18836 5 0.33279 -0.10924 6 0.22764 0.27452 9 -0.14267 0.19090 11 0.07500 -0.16332 7 0.34800 0.23939 11 1.0018750 0.42962 11 0.07500 -0.13093 11 1.0018750 0.42962 11 0.142962 -0.20196 0.1388 -0.10691 1 0.11693 -0.01116 0.36383 -0.16464 0.11396 5 0.02897 -0.22126 -0.00277 0.34413 -0.15202 7 -0.01387 0.07148 -0.24892 -0.00108 0.33395 9 0.00824 -0.03867 0.08593 -0.26208 -0.00053 11 -0.00549 0.02475 -0.04864 0.09362 -0.06569 2 </td <td></td> <td>11</td> <td></td> <td>0.05625</td> <td>-0.06978</td> <td>0.09701</td> <td>-0.21077</td> <td>0.05494</td>		11		0.05625	-0.06978	0.09701	-0.21077	0.05494
3 5		3			0.30418	-0.09277	0.04929	-0.03129
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3							0.04375
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		7			-0.16180			-0.07848
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		9			0.08391	-0.18024		0.23363
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		11			-0.05988	0.08885		0.10871
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		5				0.33279	-0.10924	0.06100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5							-0.08905
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								0.25777
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								0.16097
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-							-0.11935
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7							0.28786
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	•							0.20990
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9						0 10000	0.35749
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	J							0.33749 0.24701
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		11			TABLE VII			0.774101
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 1	a		7	0.	11
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	n							11
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0							0.08720
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	U							-0.08874
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								0.10465
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								-0.14513
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								0.32765
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		11	-0.00349	0.02475	-0.04864	0.09362	-0.20989	-0.00030
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						-0.11647	0.07746	-0.05924
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	5		-0.11708	0.11665	0.27305	-0.11099	0.07436
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				0.04668	-0.14520	0.08506	0.25995	-0.10619
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		9			0.05610	-0.16114	0.06706	0.25132
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		11		0.01761	-0.03288	0.06220	-0.17100	0.05538
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		5			0.27346	0.28895	-0.10576	0.06821
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4							-0.10683
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	•							0.26925
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								0.11209
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_							-0.10001
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6							0.28368
-0.14243		11				0.07023	-0.13/83	0 · 17093
-0.14243	8	9					0.32809	0.28604
10 11								0.23578
10 11	10	11			\$		***************************************	
	10	11						0.34077

289

Table VIII

				$\gamma_{r,s}^{n}$.			
n	r	s = 2	4	6	8	10	12
	2	$0 \cdot 10417$	0.29646	-0.12615	0.08537	-0.06562	0.05363
1	4	-0.10482	0.06712	0.26723	-0.11370	0.07736	-0.05988
	6	0.03569	-0.14939	0.04779	0.25305	-0.10699	0.07260
	8	-0.01921	0.05338	-0.16738	0.03693	$0 \cdot 24469$	-0.10281
	10	0.01215	-0.03021	0.06139	-0.17729	0.03004	0.23917
	12	-0.00842	0.01988	-0.03572	0.06609	-0.18360	0.02530
200.000	4		0.24362	0.29044	-0.11017	0.07209	-0.05478
3	6		-0.12498	0.15149	0.27696	-0.10871	0.07184
	8		0.05486	-0.14243	0.11389	0.26516	-0.10537
	10		-0.03288	0.05849	-0.15640	0.09166	0.25665
	12		0.02221	-0.03524	0.06303	-0.16592	0.07679
	6			0.29371	0.28789	-0.10251	0.06528
5	8			-0.13465	0.19699	0.28196	-0.10527
	10			0.06617	-0.13898	$0 \cdot 15543$	0.27256
	12			-0.04193	0.06233	-0.14965	$0 \cdot 12933$
	8				0.31942	0 · 28651	-0.09803
7	10				-0.14036	0.22531	0.28507
	12				0.07359	-0.13692	0.18395
9	10					0.33505	0.28565
	12					-0.14414	$0 \cdot 24459$
11	12						0.34556

A. T. DOODSON

II—Ocean Bounded by Complete Meridian: Diurnal Tides

By A. T. Doodson, F.R.S.

1—Introduction

In Part I, the problem of determining the tides in an ocean bounded by a complete meridian has been reduced by Proudman to the solution of an infinite number of simultaneous equations, but if the methods of least squares are used a finite number of equations can be considered as giving an adequate representation of the solution.

This part deals with the numerical solution of the equations resulting from the use of 63 coordinates or variables, related together by six sets of equations.

The solution of so many simultaneous equations is a somewhat formidable task for even a particular value of the depth of the ocean, but a general solution was sought in which each coordinate is expressed in terms of the principal coordinates, and these again in terms of the two most important coordinates. At each stage the coefficients are series in powers of the reciprocal of the depth. By this method a resonance-equation was derived from which the critical depths for resonance could be readily obtained.

The solution (for the diurnal tide K_1) has been adequately illustrated for four depths, two of which are critical, and these suffice to illustrate the change of tide with depth, from an infinite depth to a depth smaller than the mean depth experienced terrestrially.

A very important by-product of this work is that of the tabulation of Fourier Expansions of the Associated Legendre Functions. This work is added as an Appendix to this part, where also the advantages of these expansions are explained.

2—The Associated Legendre Functions

In Part I the solution has been obtained as a series of terms involving $P_r^n (\cos \theta)/L_r^n$ where P_r^n (cos θ) is an Associated Legendre Function, and L_r^n is a certain constant. In the Appendix to this present part we have provided tables of a function $F_r^n(\theta)$ which is more generally useful than $P_r^n (\cos \theta)/L_r^n$, with the relation

where

$$\pi_r^n = \{\frac{1}{2}\pi r \ (r+1)\}^{-\frac{1}{2}} \ (n>0), \ldots (2.2)$$

$$\pi_r^{o} = {\pi r (r+1)}^{-\frac{1}{2}}, \dots, \dots, \dots, \dots$$
 (2.3)

3—FORMULAE FOR AUXILIARY FUNCTIONS

The solution given by Proudman makes use of two auxiliary functions, ϕ and ψ , which can be written for the diurnal case as

$$\phi = \sum_{r,n} p_r^n \pi_r^n \mathbf{F}_r^n (\theta) \sin n\chi \ e^{i\sigma t}, \qquad (3.1)$$

291

$$\psi = \sum_{r,n} p_{-r}^{n} \pi_{r}^{n} \mathbf{F}_{r}^{n} (\theta) \cos n \chi \ e^{i\sigma t}, \quad \ldots \qquad (3.2)$$

where p_r^n and p_{-r}^n are the Lagrangian Coordinates.

4—FORMULAE FOR THE LAGRANGIAN COORDINATES

The diurnal tide is taken for the case $\sigma/2\Omega = f = 0.5$, corresponding to the luni-solar diurnal tide K₁.

In order to deal with real quantities throughout, and to avoid the continual writing of $i = \sqrt{-1}$, we shall deal with ip_s^n where the coordinates are imaginary. The equations (Part I, (3.91), (3.92)), for the diurnal case, then take the form

$$p_r^n = \Pi_r^n + \frac{\beta}{2\lambda_r} \{ \frac{1}{2} p_r^n - \sum_{s,m} \beta_{r,s}^{n,m} i p_s^m - \sum_{t,m} \beta_{r,-t}^{n,m} i p_{-t}^m \} \qquad (r, n, t, odd; s, m \text{ even}),$$
(4.1)

$$ip_r^n = i\Pi_r^n + \frac{\beta}{2\lambda_r} \{\frac{1}{2}ip_r^n + \sum_{s,m} \beta_{r,s}^{n,m}p_s^m + \sum_{t,m} \beta_{r,-t}^{n,m}p_{-t}^m\}$$
 (r, n, t even; s, m odd), (4.2)

$$p_{-r}^{n} = \prod_{s,m}^{n} + 2 \sum_{s,m} \beta_{-r,-s}^{n,m} i p_{-s}^{m}$$
 (r, m even; s, n odd), (4.3)

$$ip_{-r}^{n} = i\Pi_{-r}^{n} - 2\sum_{s,m} \beta_{-r,-s}^{n,m} p_{-s}^{m}$$
 (r, m odd; s, n even), (4.4)

where

$$\Pi_{-r}^{n} = 2 \sum_{s,m} \beta_{-r,s}^{n,m} i p_{s}^{m} \quad (r, s, m \text{ even }; n \text{ odd}), \quad . \quad . \quad . \quad (4.5)$$

$$i\Pi_{-r}^{n} = -2\sum_{s,m} \beta_{-r,s}^{n,m} p_{s}^{m}$$
 (r, s, m odd; n even), . . . (4.6)

$$\lambda_r = r (r+1). \ldots \ldots \ldots \ldots \ldots (4.7)$$

The values of $\beta_{r,s}^{n,m}$, etc., are obtained from the values of α and γ tabulated in Part I, according to the relations appropriate to "the odd solution" of Part I, (4.41), (4.42), and (4.44), and these relations also determine the statements as to r, s, m, n, t, being odd or even in the above equations.

A. T. DOODSON

5—Transformation of One Equation

We shall transform (4.3) by substituting from (4.4), whence we obtain the form

$$p_{-r}^{n} = \Pi_{-r}^{n} + 2 \sum_{s,m} \beta_{-r,-s}^{n,m} i \Pi_{-s}^{m} - 4 \sum_{s,m} B_{-r-s}^{n,m} p_{-s}^{m}.$$

The coefficients of $i\Pi_{-s}^{m}$ and of p_{-s}^{m} in the expansion are given in Table I, p. 305, the interpretation of which is, for example,

$$p_{-2}^{1} = \Pi_{-2}^{1} + (0.4841 \, i \Pi_{-1}^{0} + 0.3019 \, i \Pi_{-3}^{0} + \ldots) + (0.3746 \, p_{-2}^{1} + 0.0214 \, p_{-4}^{1} + \ldots).$$

This process could be continued by further substitutions, now from Table I, for the values of p_{-s}^{m} on the right, but the convergence would be slow, as we see from the size of the coefficient of p_{-2} in the above example. We have, however, transferred this term to the left of the equation, and then divided throughout by (1-0.3746), whence we got for the first equation

$$p_{-2}^{1} = 1.5990 \,\Pi_{-2}^{1} + (0.7742 \,i\Pi_{-1}^{0} + \ldots) + (0.0342 \,p_{-4}^{1} + \ldots)$$

This process was effected for the first three equations only (i.e., for n=1 and r=2, 4, 6), after which further substitutions for p_{-s}^{m} were made; by successive approximations we quickly obtained

$$p_{-r}^{n}$$
 in terms of Π_{-r}^{n} and $i\Pi_{-s}^{m}$.

Now that the odd and even terms are automatically taken care of, we can replace the notation Π_{-r}^{n} by Π_{-s}^{m} , so generalizing s, and obtain, as in Table IV,

$$p_{-r}^{n}$$
 in terms of Π_{-s}^{m} and $i\Pi_{-s}^{m}$ (5.1)

The numerical processes involved are very simply effected; they consist of placing two columns of figures side by side, multiplying terms adjacent to one another (in the same row), and summing the products continuously on the machine.

6—Outline of Treatment of Equations

The numerical representations of equations (4.5), (4.6), (5.1) replacing (4.3), (4.4), (4.1), (4.2), are set forth in Tables II to VII respectively. As the odd and even characteristics are automatically ensured in future, we replace t by s in (4.1)and (4.2). The arrangement of the tables in this order depends upon the possibilities

293

of solution in consecutive powers of β . To begin with, Π_r^n is known from Part I (4.52) and (4.54) as follows:—

$$n = 1 \begin{cases} r = 1 & 3 & 5 & 7 & 9 & 11 \\ \Pi_r^n = -0.7675, -0.1954, 0.0306, -0.0100, 0.0050, -0.0028 \times H/h \\ n = 2 \begin{cases} r = 2 \\ i\Pi_r^n = 0.5284 \text{ H/h} \end{cases}$$
(6.1)

Hence, from Tables II, III, the values of Π_{-r}^{n} , $i\Pi_{-r}^{n}$ can be computed to the same zero order in β by putting $p_r^n = \Pi_r^n$. Then from Table IV the values of p_{-r}^n become known, and thence ip_{-r} from Table V, to the same zero order in β . These stages having been completed, Tables VI and VII can be used to give coefficients to the first order of β in p_r^n and ip_r^n . These are then used to commence a new cycle, and so on for successive cycles.

It would have been possible to have transformed (4.4) in the same way as (4.3), but simple estimation of the number of computations involved in so doing, and in the resulting processes, showed that much extra labour would be entailed by such a procedure. Similarly, the possibilities of elimination of p_{-t}^{m} and ip_{-t}^{m} from equations (4.1) and (4.2) were considered, but the advantages of the method outlined above were shown to be enormously great, seeing that in any case p_{-t}^{m} and ip_{-i}^{m} are required in the final solution.

The direct application, however, of the method outlined above, would be to give for each coordinate a power-series in β , so that resonance would only be indicated by the divergence of these series. The next simple possibility would be to take H/h and p_1^1 as independent variables, and to express all other coordinates as a linear function of these, with series-coefficients in β . In the determination of the coefficients involving H/h we should put $p_1^1 = 0$, and for those involving p_1^1 we should put H/h = 0, and therefore $\Pi_r^n = 0$, with $\Pi_1^1 = p_1^1$ for the first stage. The equation for p_1^1 in Table VI could be ignored until the end, when it would be possible to substitute in it for all coordinates, and so get p_1^1 as a linear function of H/h and itself. This equation would then give p_1^1 as a ratio of two power-series in β . The resonant cases would thus be simply indicated by the vanishing of the denominator.

A simple examination of the coefficients likely to result showed that even this modification was not of practical value, and a systematic examination on similar lines was made, with a larger number of independent variables. The method that promised to be most economical in labour was to take each coordinate in terms of

$$H/h, p_1^1, ip_2^2, p_3^1, p_3^3, ip_4^2, ip_4^4.$$
 (6.3)

With this choice a fairly rapid convergence up to $\beta = 40$ was indicated. It was decided, for convenience, to write

$$x = \beta/40, \ldots (6.4)$$

which explains the amendment of formulae (4.1) and (4.2) under Tables VI and VII.

A. T. DOODSON

7—Computation of Coordinates in Terms of the Independent COORDINATES

We shall take as an example the case H/h = 1, and all the other independent coordinates of (6.3) to be zero.

Three sheets were prepared and lettered A, B, C. On Sheet A (see Table VIII), were entered the results of computations for Π_{-r}^{n} and $i\Pi_{-r}^{n}$, Sheet B gave ip_{r}^{n} and ip_{-r}^{n} , and Sheet C gave p_r^n and p_{-r}^n . The columns on these sheets were headed with powers of x, and the spacing of s, m was arranged to fit appropriate tables among Tables II to VII. The upper and lower divisions of Sheets A, B, C, were denoted by (a) and (b) respectively.

The procedure is systematically set forth as:—

Compute	From	Enter on	L .
Π_{-r}^{n}	Table II and Ba	Aa	
$i\Pi_{-r}^{n}$	Table III and Ca	Ab	for the same power of x .
p_{-r}^{n}	Table IV and all A	Cb (for the same power of x.
ip_{-r}^{n}	Table V and Cb and Ab	Bb)	
p_r^n	Table VI and all B	Ca	for the next power of x , using
ip_r^n	Table VII and all C	Ba	$\frac{1}{2}p_r^n$, $\frac{1}{2}ip_r^n$ from the present power.

In the case H/h, we wrote dashes in B and C against the rest of the independent In C we entered the values of Π_r^n in the first column, from (6.1), omitting r = 1, 2, 3. This column was placed alongside the first column of Table III, corresponding terms were multiplied together and the products summed continuously on the machine: the result is $i\Pi_1^0$ placed in the first column of Ab. along Table III a similar procedure gave $i\Pi_3^0$, and so on, until the entries of the first column of Ab were completed.

There are thus no values of $i\Pi_r$ to be entered in Ba so that the use of this with Table II gives zero results in Aa.

The rest of the processes are very similar, such additions as are needed in the use of Tables V, VI, and VII, being easily made. The multiples $20/\lambda$, required in Tables V and VI are at the feet of the tables.

Checks of the computations were effected by summation methods; by applying, for example, Ba to the horizontal sums of the coefficients in Table II, when the result equalled the sum of the values Π_{-r}^{n} . Similar elaborate checks were made throughout the work.

The results of this stage are given in Tables VIII—XIV. Only in Table VIII, for purposes of illustration of the method, has it been thought needful to give Π_{-r} and $i\Pi_{-r}$, seeing that these are only intermediate functions not required in the later stages. The interpretation of these tables is fairly obvious, but an example may help; thus Table IX C indicates that that part of the expansion of p_5 depending upon p_1^1 is

$$(0.0677 \ x - 0.0037 \ x^2 + 0.0040 \ x^3 + \ldots) \ p_1^1.$$

8—Equations for "Independent Coordinates"

When using Tables VI and VII there were six equations, those for the independent coordinates, which were not used. The process of substitution of the results of §7 in these six equations is a straightforward matter. We have, for example, from Table VI,

$$p_1^{1} = \Pi_1^{1} + x. \frac{20}{\lambda_s} \{ \frac{1}{2} p_1^{1} + \sum_{s,m} (-\beta_{1,s}^{1,m}) i p_s^{m} \}$$

or

$$(1-5x) p_1^{1} = \Pi_1^{1} + x \frac{20}{\lambda_r} \{ \sum_{s,m} (-\beta_{1,s}^{1,m}) i p_s^{m} \}.$$

After substituting for ip_s^m in this equation the terms on the left were transferred to the right, so collecting all terms in p_1^1 .

The results are shown in Table XV, which gives six simultaneous equations, with coefficients which are power series in x. These power series are tabulated only to x^7 , but it is clear that further terms can be extrapolated by multiplying successively by -1/3, and such terms were used in the subsequent processes.

9—Solution of Six Simultaneous Equations whose Coefficients are Power-series

The solution of the equations of Table XV is at first sight rather a formidable problem, but it is actually effected with ease, using familiar methods of procedure. The equations were treated in pairs, to eliminate one variable at a time, and this operation involved the multiplication of two series.

Suppose that $a_0 + a_1 x + a_2 x^2 + a_3 x^3$ has to be multiplied by $b_0 + b_1 x + b_2 x^2 + b_3 x^3$, then the coefficients of the second series can be written vertically upwards and placed alongside the coefficients of the first series, written vertically downwards. By sliding one column up and down we get the positions for multiplication for successive powers of x; the arrangements to give coefficients of 1, x, x^2 , . . . are as follows:—

That is, the coefficient of x^2 is $a_0 b_2 + a_1 b_1 + a_2 b_0$.

The double application of this process, where the sum of two products (each of two series) is required, is also simple.

As an example, taking equations (XV e) and (XV f), to eliminate ip_4^2 we wrote on a slip of paper the coefficients under ip_4^2 , in reverse order, but changing the signs A. T. DOODSON

of the coefficients of (XVe). These were written vertically and placed alongside the first column. The first three terms of the product are obtained from the arrangements

$0.0000 \\ 0.0490$	-0.0356 0.0000	$0.0000 \\ 0.0490$	-0.0284 -0.0356	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-0.0024 -0.0284
•	•	-0.0013	0.0000	-0.0013	-0.0356
•	•	•		-0.0026	0.0000
•	•	•		•	•
0·0000 0·0138	0·0643 1·0000	0.0000 -0.0138 0.0264	-0.0527 0.0643 1.0000	$ \begin{vmatrix} 0.0000 \\ -0.0138 \\ 0.0264 \\ -0.0030 \end{vmatrix} $	0.0041 -0.0527 0.0643 1.0000

and the machine-sums of the products give

-0.0020. -0.01380.0273

These results are given in the first column of Table XVI, which gives two equations resulting from the elimination of ip_4^2 and ip_4^4 .

Successive applications of these principles led to the results of Tables XVII, XVIII, XIX. During the process of this work a rather curious development took place: the coefficients for x, x^3, x^5 ... oscillated in sign, and so did those of x^2 , x^4 , x^6 , An arbitrary multiplication by $(1 + x^2)$ at an appropriate stage tended to counteract this tendency. Further, it had the advantage of doubling the magnitudes of the coefficients near x = 1, a matter of some importance as the repeated multiplication of series tended to give small coefficients for x = 1.

Checks were made by comparing the results at each stage with the independent solutions of the original six equations on taking x = 0.5 and x = 1. adjustments of the higher terms were occasionally made to maintain this correspondence.

The convergence is quite satisfactory; ultimately the rate is very rapid: but for the oscillatory character of the earlier coefficients leading to increasing size of coefficients, and therefore to loss of accuracy, it would be possible to proceed a stage further than Table XIX to give p_1^1 in terms of H/h. The denominator would then give the resonance equation.

10—The Resonance Equation

If we write Table XIX in the symbolic form

$$A.p_1^1 + B.ip_2^2 + C.H/h = 0,$$

 $D.p_1^1 + E.ip_2^2 + F.H/h = 0,$

then we get the resonance cases given by

$$AE - BD = 0 \quad . \quad (10 \cdot 1)$$

297

We have been content, however, to resort to numerical expressions for these equations at intervals of 0.1 in x, and we obtain results as follows:—

$\boldsymbol{\mathcal{X}}$	β	AE—BD	p_{1}	ip_2^2	\
0.0	0	4.0000	-0.7675 H/h	$0.5284 \; H/h$	
$0 \cdot 1$	4	$2 \cdot 6397$	-1.3396	0.6851	
$0 \cdot 2$	8	1.0456	$-3 \cdot 4024$	1.3319	
$0 \cdot 3$	12	-0.3096	$10 \cdot 158$	-3.028	
$0 \cdot 4$	16	-1.0765	$2 \cdot 2420$	-0.4810	(10.0)
0.5	20	$-1 \cdot 1639$	$1 \cdot 3393$	-0.1673	\rangle . (10.2)
0.6	24	-0.7685	1.0328	0.0003	
$0 \cdot 7$	28	-0.2510	1.0657	0.2996	
0.8	32	0.0841	-0.1522	-0.8454	
0.9	36	0.1550	0.3006	-0.2464	
$1 \cdot 0$	40	0.0814	0.3194	-0.1454	/

By interpolation, and subsidiary calculations, we get resonance indicated as taking place when

$$\beta = 10.948$$
 and $\beta = 30.63$, (10.3)

corresponding to depths of

$$h = 26,520$$
 ft. and $h = 9,480$ ft. (10.4)

11—Computation of
$$\phi$$
, ψ , u , v

From the proceeding results it appeared that the solution would be adequately illustrated by taking the cases

For the two cases of resonance all coordinates are infinitely large and change sign as β changes through the resonant value; for computation we have taken p_1^{-1} at the nominal value of unity.

The derivation of the values of the coordinates follows simply and systematically from Tables XIX to VIII, and the results are given for the selected cases in Tables XX(a) to XX(d).

The values of ϕ and ψ follow from (3.1) and (3.2), using the tables for $F_r^n(\theta)$ given in the Appendix, and the results are given in Tables XXI and XXII. The values for the resonant cases, of course, are to be multiplied by $\pm \infty$.

A. T. DOODSON

The components of velocity, u and v, are obtained from the equations Part I (2.2), which give

$$\frac{u}{\sigma a} = -i \frac{\partial \phi}{\partial \theta} - \frac{i}{\sin \theta} \frac{\partial \psi}{\partial \chi},$$

$$\frac{v}{\sigma a} = i \frac{\partial \psi}{\partial \theta} - \frac{i}{\sin \theta} \frac{\partial \phi}{\partial \gamma}.$$

The differentiation of the Fourier series, whether in θ or χ , is of course very simply effected. With regard to the operation of dividing or multiplying by $\sin \theta$, we use the formulae given below.

$$2 \sin \theta \ (a_{0} + a_{2} \cos 2\theta + a_{4} \cos 4\theta + \dots)$$

$$= (2a_{0} - a_{2})^{*} \sin \theta + (a_{2} - a_{4}) \sin 3\theta + \dots$$

$$2 \sin \theta \ (a_{1} \cos \theta + a_{3} \cos 3\theta + \dots)$$

$$= (a_{1} - a_{3}) \sin 2\theta + (a_{3} - a_{5}) \sin 4\theta + \dots$$

$$- 2 \sin \theta \ (b_{1} \sin \theta + b_{3} \sin 3\theta + \dots)$$

$$= (0 - b_{1})^{*} + (b_{1} - b_{3}) \cos 2\theta + \dots$$

$$- 2 \sin \theta \ (b_{2} \sin 2\theta + b_{4} \sin 4\theta + \dots)$$

$$= (0 - b_{2})^{*} \cos \theta + (b_{3} - b_{4}) \cos 3\theta + \dots$$

The terms marked with an asterisk (*) require special treatment; otherwise the new terms are simply derived from the old terms by taking first differences. Such a procedure can be repeated indefinitely.

Similarly we have, for instance, since P_r^n (cos θ) has sin θ as a factor if $n \ge 1$

$$- (a_0 + a_2 \cos 2\theta + a_4 \cos 4\theta + a_6 \cos 6\theta)/2 \sin \theta$$

$$= (a_2 + a_4 + a_6) \sin \theta + (a_4 + a_6) \sin 3\theta + a_6 \sin 5\theta$$

$$- (a_1 \cos \theta + a_3 \cos 3\theta + a_5 \cos 5\theta)/2 \sin \theta = (a_3 + a_5) \sin 2\theta + a_5 \sin 4\theta$$

provided

$$a_0 + a_2 + a_4 + a_6 = 0$$
 (*)
 $a_1 + a_3 + a_5 = 0$ (*)

Also

$$\begin{array}{l} (b_1 \sin \theta + b_3 \sin 3\theta + b_5 \sin 5\theta)/2 \sin \theta \\ = \frac{1}{2} (b_1 + b_3 + b_5)^* + (b_3 + b_5) \cos 2\theta + b_5 \cos 4\theta \\ (b_2 \sin 2\theta + b_4 \sin 4\theta + b_6 \sin 6\theta)/2 \sin \theta \\ = (b_2 + b_4 + b_6) \cos \theta + (b_4 + b_6) \cos 3\theta + b_6 \cos 5\theta \end{array}$$

Note the terms with the asterisks.

In all these cases the process is that of continued summation of the terms beginning with the last term in the series.

As an example, take ϕ with n=1, $\beta=40$. Then $\partial \phi/\partial \chi$ is a Fourier series in $\sin s\theta$, and $\csc \theta \partial \phi/\partial \chi$ is then a Fourier series in $\cos s\theta$; the computations give

S	$\partial \phi/\partial \chi$	S	$\frac{1}{2\sin\theta}\cdot\frac{\partial\theta}{\partial\chi}$
1	 0.1520	0	 $\frac{1}{2} [0.1357]$
3	 -0.0195	2	 -0.0163
5	 0.0050	4	 0.0032
7	 -0.0019	6	 -0.0018
9	 0.0007	8	 0.0001
11	 -0.0006	10	 -0.0006

The second set we obtained from the first by repeated additions commencing at the bottom (-6, -6+7, -6+7-19...).

The values of u and v are given in Tables XXIII and XXIV.

12—Questions of Convergence and the Computation of ζ

The convergence manifested by the coordinates given in Table XX is obviously sufficient, as also is that of ϕ and ψ given in Tables XXI and XXII.

The values of ζ can now theoretically be obtained in three ways. Firstly, we have from Part I (3.51),

$$\frac{\zeta}{h} = -\sum_{r} \lambda_{r} p_{r}^{n} \pi_{r}^{n} F_{r}^{n} (\theta) \sin n\chi e^{i\sigma t} \qquad (12.1)$$

299

The value of λ_r is r(r+1) and the supreme objection to this formula is that the convergence of the resulting series is very slow.

Secondly, we can use the second equation of Part I (2.2), where

$$\frac{\partial}{\partial \chi} \left(\frac{\zeta - \overline{\zeta}}{h} \right) = -\frac{1}{4} \beta \left(i \frac{v}{\sigma a} \sin \theta + 2 \sin^2 \theta \sin \chi \frac{u}{\sigma a} \right). \quad . \quad . \quad (12.2)$$

Objection to this formula rests also upon the degree of convergence. In computing u and v we have to differentiate ϕ and ψ with regard to θ and the differentiation of the Fourier series makes the convergence relatively slow, though not so slow as in (12.1). This difficulty, by the way, is not due to the use of the Fourier expansions but is inherent. Differentiation with regard to χ is not prohibitive, because the convergence with regard to χ is extremely rapid.

Thirdly, we can use the first equation of Part I (2.2), giving

$$\frac{\partial}{\partial \theta} \left(\frac{\zeta - \overline{\zeta}}{h} \right) = \frac{1}{4} \beta \left(-i \frac{u}{\sigma a} + 2 \sin \theta \sin \chi \frac{v}{\sigma a} \right). \quad . \quad . \quad . \quad (12.3)$$

This formula is the best of all, as integration with regard to θ counteracts the prior differentiation. It is this formula which has been used for the values of ζ , as given in Tables XXV (a) to (d).

and thence

A. T. DOODSON

It will be noted that in the Fourier expansions so resulting we have odd and even values of s together. Special reference needs to be made to s = 0:—

- (a) The term associated with $\cos s\theta$; this is introduced as an integration constant to make $\zeta = 0$ at $\theta = 0$.
- (b) The term associated with sin $s\theta$; this has a coefficient proportional to θ , and it arises quite naturally in the process of integration.

The term with coefficient θ is of very great importance; in consequence of it we see that $\partial \zeta/\partial \theta$ is not zero at $\theta = \pi/2$, the bounding meridian. This non-zero gradient is not indicated by (12.1) because all the terms are symmetrical with regard to $\theta = \pi/2$. In other words the first formula fails near the boundary.

A consideration of the properties of the Associated Legendre Functions, whether in general terms or in connexion with the Fourier expansions, shows that, when nis not comparable with r, the function oscillates something like $\sin r\theta$. This suggests that the difference between the true value of ζ and its expansion in these functions will be oscillatory and that in the main the oscillations will be more frequent as the number of terms is increased. Hence, if (12.1) were used, it would be necessary to use a graphical process to eliminate these oscillations.

The following table gives a comparison between

- (a) the contributions to ζ on the central meridian for $\beta = 20$, n = 1 as obtained from the adopted method, using (12.3), and
- (b) the corresponding values obtained by the use of (12.1).

θ	(a)	(b)	Difference	θ	(a)	(b)	Difference
0°	 0.000	0.000	0.000	50°	-0.894	-0.929	0.035
10	 -0.412	-0.350	-0.062	60	-0.916	-0.912	-0.004
20	 $-0\cdot 724$	-0.758	0.034	70	-0.987	-0.949	-0.038
30	 -0.898	-0.909	0.011	80	-1.320	-1.408	0.088
40	 -0.920	-0.874	-0.046	90	$-2 \cdot 004$	-1.757	-0.247

It is clear, on graphing the difference, that the discrepancies are oscillatory until near the pole, and that a graph of (b) smoothing out the oscillations, would give a fairly accurate representation of (a). The real difficulty, of course, is to decide what the discrepancy would be at the pole.

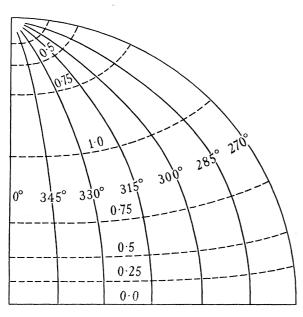
13—Amplitudes, Phase-lags, and Cotidal Charts

From the values of ζ in the complex form we deduce the form

$$\zeta = \zeta_1 \cos \sigma t + \zeta_2 \sin \sigma t, \quad \dots \quad (13.1)$$

$$\zeta = R \cos (\sigma t - \gamma), \quad \dots \quad (13.2)$$

where γ is the lag of phase of the diurnal tide behind the phase of the diurnal equilibrium tide on the central meridian.


The values of $\zeta_1, \zeta_2, R, \gamma$, are given in Tables XXVI (a) to (d), and the cotidal and corange lines are drawn in figs. II to V. The case of infinite depth ($\beta = 0$), for which ζ takes the equilibrium form, is also illustrated in fig. 1.

TIDES IN OCEANS BOUNDED BY MERIDIANS

The diagrams for the oceans are drawn without respect to systems of projections, as though θ , χ were two-dimensional polar coordinates.

14—Discussion of Results

From §10 we see that there is direct comparability between the results for $10.948 < \beta < 30.63$, in that p_1^1 is positive throughout and we assumed a positive value for the illustration of the resonant cases. To compare with results for $\beta = 0$ and 40 the values of γ in the resonant cases must be changed by 180°.

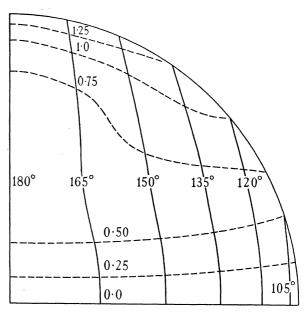


Fig. 1—Diurnal tide (K₁); cotidal and corange lines for $\beta = 0$.

Fig. 2—Diurnal tide (K₁); cotidal and corange lines for $\beta = 10.948$.

The first result of decreasing depth (figs. 1 and 2) is to affect the tide at the pole to a very marked degree. A stable condition is quickly reached in which the amplitude at the pole (instead of being zero as in the case of infinite depth) is the maximum for the whole ocean. The cotidal lines consequently no longer converge on the pole, and in place of the bounding meridian being a cotidal line there is a steady change in phase from equator to pole.

After the first case of resonance the changes are comparatively small, but proceed towards the development of an amphidromic point which is shown in the resonant case for $\beta = 30.63$. The development of a point of zero range is apparent even for $\beta = 10.948$ (fig. 2) and is still more apparent for $\beta = 20$. We may note that A. T. DOODSON

the phase-change along the equator, from one side of the ocean to the other, greatly decreases from $\beta = 0$ to $\beta = 30.68$.

The genesis of the amphidromic point is of interest. In certain theoretical cases (such as the tides in non-rotating oceans), such a point develops at the pole and

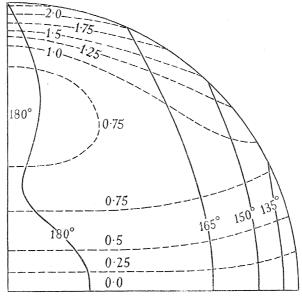


Fig. 3—Diurnal tide (K_1) : cotidal and corange lines for $\beta = 20$.

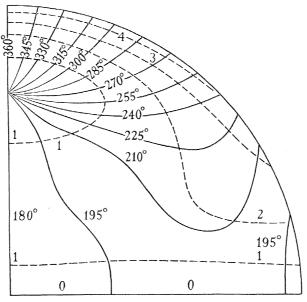


Fig. 4—Diurnal tide (K1): cotidal and corange lines for $\beta=30\cdot 63.$

travels towards the equator as the depth varies, but there is no indication here that such a point is ever found near the pole after $\beta = 0$. The stability of the association between the pole and the maximum amplitudes is sufficient proof.

Without further calculation for some value of β between 30.63 and 40 it would be difficult to say whether the amphidromic point ever approaches the equator. To compare figs. 4 and 5 it is needful to add 180° to the angles in the former figure, and then we see that there is a possibility of some such phenomenon. It should be said, however, that the complexity of the cotidal lines near the equator in the case of $\beta = 40$ is somewhat misleading, for the amplitude of tide is really very small below latitude 30°, and its variations are of negligible importance. Moreover, the errors of computation may be of comparable magnitude with such a small tide and for such a large value of β . That the changes with β beyond the second resonant case tend to become complicated is apparent from §10, for the values of p_1^1 change rapidly in sign and magnitude while ip_2^2 remains steady in sign and slowly diminishes in

TIDES IN OCEANS BOUNDED BY MERIDIANS

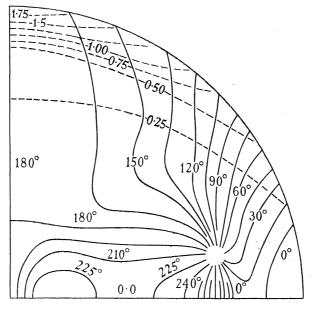


Fig. 5—Diurnal tide (K_1) : cotidal and corange lines for $\beta = 40$.

We can safely say, however, that the principal characteristic of the tide for $\beta = 40$ remains as the concentration of the tide in polar regions.

15—Contour Lines

As a preliminary discussion (it is hoped) of the physical processes, the results for $\beta=20$ have been expressed in an alternative form. From the values of ζ_1 and ζ_2 it is easy to compute ζ for any given value of t, and this has been done for intervals of 30° in σt , corresponding approximately to time intervals of two hours of solar time. A graphical representation of the contour lines at intervals of 0.5H in ζ has been given in fig. 6.

We note that the maximum elevation at any moment is always on the bounding meridian and varies considerably. At $\sigma t = 0$ the maximum elevation is at the South

A. T. DOODSON

Pole, and low water occurs at the North Pole. The maximum depression swings round the boundary towards the west and tends to fill up, so that at $\sigma t = 90^{\circ}$ (the

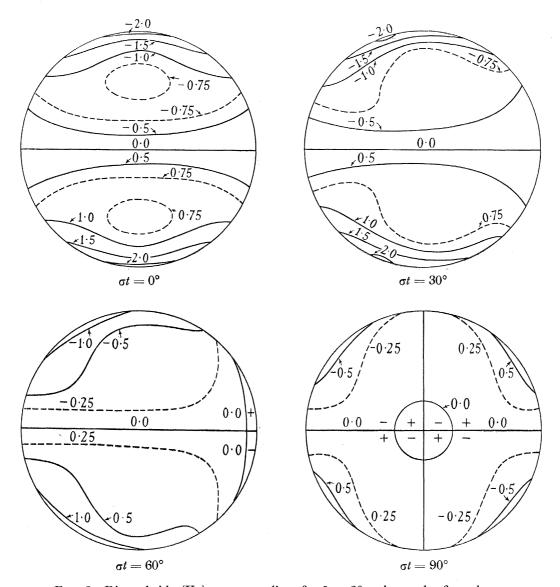


Fig. 6—Diurnal tide (K_1) : contour lines for $\beta = 20$ at intervals of two hours.

quarter period) the maximum depression or elevation is only 0.5H as against 2H at $\sigma t = 0^{\circ}$. From this point the maximum depression steadily travels south until $\sigma t = 180^{\circ}$.

	TIDES	IN OCEANS	S BOUND	DED BY	MERIDIANS	308	5
	/ ²¹		- 82 113 -177 493	- 96 164 -471		18 - 13 - 13 - 30	25 - 23 27 55
ro II	10		126 -205 571 540	174 —529 —503		- 21 12 - 9 - 70 - 14	- 25 19 124 27
# <i>u</i>	∞		-230 664 610 -186	-565 -565 177		30 - 16 - 97 - 9 11	34 157 19 - 23
	(0		725 682 -205 111	-579 190 106		- 44 122 15 11	143 34 — 25 25
	72	81 97 124 189 520	84 —116 182 —508		- 32 - 14 - 10 - 10 - 34	- 31 - 23 - 21 - 26 65	- 11 - 11 - 14 - 30
m p m b - s	10	118 152 228 619 564	-131 214 -596 -550		40 - 14 - 7 - 8 - 80 - 13	35 - 21 16 151 26	11 - 9 - 70 - 13
$\beta_{-r,-s}$ I places $n=3$	√ ∞	191 286 761 680 205	248 714 655 200		- 59 - 10 - 124 - 7	- 49 27 224 - 21	- 15 - 97 - 9 - 9
$-4\Sigma_{s,m}$ lecima.	9	-373 977 849 -249 133	846 796 240 130		96 - 30 - 200 - 10 - 8 - 10	79 332 27 - 21 23	-122 -16 12 -13
TABLE I s, " i II_s" given to 4 o	4	$ \begin{array}{r} 1297 \\ 1088 \\ - 306 \\ 158 \\ - 99 \end{array} $	 942 287 153 97 		- 186 - 340 - 28 - 17 - 13	400 79 - 49 35 - 31	- 44 30 - 21 18
TAB β, _s", re give	12 12 127 127 -144 181 181 751	- 82 98 125 191 527			43 - 25 23 - 27 36 107	12 - 10 - 13 - 34	
Table I $\Pi_{-r}^{n} + 2 \sum_{s,m} \beta_{-r,-s}^{n,m} i \Pi_{-s}^{m} - 4 \sum_{s,m} \beta_{-r,-s}^{n,m} p_{-s}^{m}$ (Coefficients are given to 4 decimal places.) $n = 3$	10 181 -186 226 -334 902 819	120 155 232 630 575			- 46 20 - 15 14 254 36	- 13 - 7 - 8 - 80 - 12	
	8 - 279 304 - 431 1128 1002 - 300	197294783700211	•		64 - 24 15 400 14 - 27	17 - 10 - 124 - 7	
p_{-r}^{n} $n=1$	6 488 - 488 - 1508 - 1508 - 1289 - 375 - 375	393 			- 105 36 683 - 15 - 15 23	28 10 - 10 - 10	
	4 1083 2278 1806 500 500 161	-1471 -1234 347 -180 113			214 1382 36 - 24 - 25	 340 30 19 14 	
	r = 2 4841 3019 - 748 358 - 213 142	-1949 511 -249 149 -100			3746 214 105 64 46 43	18696594032	
	s 3 3 7 7 11	3 7 9 11	5 7 9 9 111	7 9	2 6 8 10 12	4 6 8 10 12	6 8 10 12
	E 0	64	4	9		က	ro
	•	_{m_e−∏i to eineiofft}	эоО		u^{s-d}	Coefficients of	

TRANSACTIONS SOCIETY A

MATHEMATICAL,
PHYSICAL
& ENGINEERING
SCIENCES

MATHEMATICAL,
PHYSICAL
& ENGINEERING
SCIENCES

TRANSACTIONS SOCIETY A

TABLE II

A. T. DOODSON

			12						-723	948	-1644	4838	2496	839	-1247	2993	-2587
	(Coefficients of ip_s^m to 4 places of decimals.)	n = 5	10						1116	-1696	4996	2942	-3607	-1323	2780	-3108	-5451
			∞						-2043	5304	3561	-3418	1703	2693	-3940	-5639	2105
			9						6422	4381	-3019	1578	-1125	-5874	-5758	2050	-1306
			12	346	90e 	-1510	4429	1511	- 444	705	-1261	3318	-1536				
			10	- 505	783 —1479	4474	1790	-4023	658	-1170	3128	-1833	-5133				
ip_s^m .		n=3	∞	0816	-1451 4551	2192	-3960	1860	-1097	2849	-2278	-5303	2107				
$\beta_{-r,s}^{n,m}$			9	-1593	47.24	-3841	1869	-1317	2500	-3030	-5539	2174	-1437				
$\Pi_{-r}^{n} = 2\sum_{s,m} \beta_{-r,s}^{n,m} \dot{\eta}_{s}^{m}.$		(4	5546	3535 -3535	1814	-1294	1022	-4872	-5809	2203	-1442	1096				
П			15	168	- 398 714	-1322	3672	-506									
			01	-243	-1228	3546	-601	-4783									
				384	i	-	1										
		= u	9	714	2300 - 956	-5061	2140	-1452									
			4	2096	-1342 -5345	2274	-1547	1198									
			r=2	-2083	- 5523 -	-1707	1312 -	-1073									
			S	01 -	4 9	00	10	12	4	9	∞	10	12	9	∞	10	12

9

m 22

 $i\Pi_{-r}^{n}=-2\sum\limits_{s,m}eta_{-r,\,s}^{n,\,m}p_{s}^{m}.$

TABLE III

(Coefficients of p_m^n to 4 places of decimals.)

		(=			-1220 1781 -5155 -3219
_	n = 6	5			2185 – -5490 -3818 – 3266 –
			•		-6656 -4553 - 2853 -
		(=		0626 - 875 1570 -4673	- 757 - 1211 - -3053 2242 -
	4	6		- 986 1590 4800 2607 3767	1223 2809 2736 5385
	n = 4			1855 5059 3235 3605 1777	2611 3545 5596 2137
		(ro		$\begin{array}{c} -6084 \\ -4147 \\ 3236 \\ -1678 \\ 1198 \end{array}$	5469 5779 2115 1364
		(=	- 231 422 - 756 1431 4232 1099	$\begin{array}{c} 352 \\ - 658 \\ 1244 \\ -3420 \\ 1108 \end{array}$	
		6	346 - 667 1364 4229 1325 4215	- 536 1122 -3223 1341 5026	
	n = 2		$\begin{array}{c} -578 \\ 1262 \\ -4225 \\ -1667 \\ 4196 \\ -1940 \end{array}$	934 2904 1701 5200 2124	
		5	$\begin{array}{c} 1187 \\ -4232 \\ -2236 \\ 4149 \\ -1985 \\ 1396 \end{array}$	2342 2333 5461 2220 1487	
		(00	$\begin{array}{c} -4529 \\ -3315 \\ 3974 \\ -2009 \\ 1429 \\ -1125 \end{array}$	3907 5854 2329 1549 1185	
			$-110 \\ 495 \\ -973 \\ 1872 \\ -5397 \\ -6$		
		6	$ \begin{array}{r} 165 \\ -773 \\ 1719 \\ -5242 \\ -10 \\ 6553 \end{array} $		
	0 =	7	- 277 14304978 - 22 - 66792903		
	"	ιĊ	579 4425 55 883 3040 2093		
	·	လ	-2339 - 223 7277 -3293 2279 -1775		
		r = 1	-3750 8592 -4039 2778 -2138 1744		
	s w	.	1 1 3 3 5 5 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 3 5 7 7 9 111	5 5 7 7 9 111
			0 5 0		

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES TRANSACTIONS SOCIETY A MATHEMATICAL,
PHYSICAL
& ENGINEERING
SCIENCES

TABLE IV

TRANSACTIONS SOCIETY SOCIETY

308

A. T. DOODSON

		[2]	18 - 13 - 11 - 13 - 30	$\begin{array}{c} 25 \\ - 23 \\ 27 \\ 1 \cdot 0055 \end{array}$		3 1 1 3	-80 113 -178 502	96165-474
	= 5	10 1	- 21 - 9 - 72 - 14	-25 - 19 - 19 - 100 1.0126 27			127 -209 586 552	176 -536 -511
	u:	8	$ \begin{array}{ccc} & 31 \\ & -16 \\ & -101 \\ & -9 \\ & 11 \end{array} $	$\begin{array}{c} 35 \\ 1.0160 \\ 19 \\ - 23 \end{array}$		3 - 10 - 7 - 2	-235 685 627 -190	575 574 181
		(o 0	- 46 128 15 11	1.0147 34 $ 25$ 25	1	- 1 - 17 - 11 - 2 - 1	748 705 211 114	-591 193 -107
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$-31 \\ -23 \\ -21 \\ 26 \\ 1 \cdot 0065$	111 — 111 — 114 — 144 — 30	- 27 - 11 - 3 - 3	$\begin{array}{c} 82 \\ -100 \\ 128 \\ -192 \\ 529 \end{array}$	84 117 185 516	1 2 2
		10 66 - 16 9 - 7 - 7 - 83 - 83	$\begin{array}{c} 36 \\ -21 \\ 16 \\ 1 \cdot 0154 \\ 26 \end{array}$	11 - 9 - 72 - 13	33 17 - 8 - 8 - 10 - 6	-125 161 -237 636 577	-135 220 -611 -563	 4 4
$i\Pi_{-s}^{m}$. cimals.)	n = 3	8 8 10 10 10 10 10 10 10	$ \begin{array}{r} -48 \\ 27 \\ \hline 1.0232 \\ -21 \\ \end{array} $	$ \begin{array}{cccc} & -15 \\ & -101 \\ & -9 \\ & 11 \end{array} $	- 47 - 28 - 15 - 20 - 11	205 -305 795 704 -210	257 741 678 206	6 6 6
ces of dec		6 160 - 36 - 223 - 10 - 10	$83 \\ 1.0351 \\ 27 \\ - 21 \\ 23$	-128 -17 -13 -14	71 53 - 51 - 23 - 1	-408 1055 894 -258 138	-891 -834 250 -134	9 - 2 1
s of II.		4 - 321 - 418 - 31 - 17 - 13	1.0436 83 - 50 - 32	- 47 31 - 22 19	- 112 - 190 - 58 - 58 - 3	$1473 \\ 1186 \\ - 323 \\ 164 \\ - 103$	99729815596	-
p_{-r}^{n} IN TERMS OF \prod_{-s}^{m} AND $i\prod_{-s}^{m}$. (Coefficients to 4 places of decimals.		$ \begin{array}{c c} & 12 \\ & 69 \\ & - 29 \\ & 25 \\ & - 27 \\ & - 27 \\ & 36 \\ & 1.0108 \end{array} $	12 - 10 - 13 - 34		- 89 138 -150 185 -280 766	$ \begin{array}{r} -88 \\ 102 \\ -130 \\ 197 \\ -541 \end{array} $	1 1 8	
p_{-r}^{n} IN (Coefficie		10 - 75 24 - 16 14 1 · 0261	- 13 - 7 - 7 - 83 - 12	П	144 206 238 346 929 842	132 -164 243 -654 -594	1 2 6 5 5	
		8 107 - 27 16 1.0418 - 28	$ \begin{array}{cccc} & 16 \\ & - & 10 \\ & - & 132 \\ & - & 7 \\ & - & 7 \end{array} $	-	- 233 341 - 460 1181 1042 - 311	- 220 317 - 832 - 737 221	10 10 - 2	
	n = 1	6 - 184 - 184 1.0739 - 15 - 15	_ 28 _ 224 _ 10 _ 9 _ 11	B	430 - 698 1640 1377 - 400 212	455 1144 976 150	$ \begin{array}{ccc} 21 \\ 18 \\ - 5 \\ 3 \end{array} $	
		4 408 1.1629 - 26 - 26 - 28	- 418 - 34 - 22 - 16	1 - 1 - 2	-1057 2768 2079 - 566 289 - 183	-1839 -1471 407 -211 131	44 - 12 - 5 - 3	
		$ \begin{array}{c} $	- 320 158 - 94 - 63 - 49	 	7699 4949 1159 544 320 213	-3243 774 - 364 - 142	13 - 13 - 10 - 8	
		s 2 4 4 8 10 10 11 21 21 21 21 21 21 21 21 21 21 21 21	4 6 8 10 12	6 8 10 12	1 3 7 7 9 9	3 7 7 9 9 111	5 7 9	7 9
		1 3	G	ro	0	61	4	9

Coefficients of $i\Pi_{-1}^{m}$

Coefficients of Π_{s} - Π

TIDES IN OCEANS BOUNDED BY MERIDIANS

$ip_{-r}=i\Pi_{-r}^{n}-2\sum_{s,m}\beta_{-r,-s}^{n},^{m}p_{-s}^{m}.$ (Coefficients of p_{-s}^{m} to 4 places of decimals.) TABLE V

9

11 u

n = 4

n=2

n = 0

(11												-106	177	-503	-471
{	6												190	-565	-529	164
	7												-579	-565	174	96 –
(11							62	-130	200	-550	-508	111	-186	540	493
	6							-153	240	-655	-596	182	-205	610	571	-177
	7							287	-796	-714	214	-116	682	664	-205	113
	5							-945	-846	248	-131	84	725	-230	126	- 82
(11	-100	113	-140	211	-575	-527	66 –	133	-205	564	520				
	6	149	-180	262	-700	-630	191	158	-249	089	619	-189				
	7	-249	347	-895	÷783	232	-125	-306	849	761	-228	124				
	ß	511	-1234	-1030	294	- 155	86	1088	977	- 286	152	- 97				
	က	-1949	-1471	393	- 197	120	- 82	1297	- 373	191	- 118	81 -				
(-300 -				1		1					
	6	- 213	257	- 375	1002	905	- 273									
	7	358	- 500	1289	1128	- 334	181									
	S	- 748	1806	1508	- 431	- 526	- 144									
	က	3019	2278	609 -	304	- 186	127									
	r = 1	4841	-1083	488	- 279	181	- 127									
S		63	4	9	∞	10	12 -	4	9	∞	10	12	9	∞	10	12
m		_						က					ß			

A. T. DOODSON

2999

1515

3571

1515 1.6667

10.00000 1.6667

TRANSACTIONS SOCIETY & ENGINEERING SCIENCES	Table VI	$p_r^n = \prod_r + x \cdot \frac{20}{\lambda_r} \left\{ \frac{1}{2} p_r^n + \sum_{\epsilon, m} (-\beta_{r, s^n} m i p_s^m) + \sum_{\epsilon, m} (-\beta_{r, -s^n} m i p_{-s}^m) \right\}.$	places of decimals; except $n = 1$, $r = 1$, given to 5 decimals.)
RANSACTIONS SOCIETY & ENGINEERING SCIENCES		$p_r^n=\Pi_r^n+x.rac{20}{\lambda_r}\left\{rac{1}{2}p_r^n+ ight.$	(Coefficients to 4 places of decima

310

838 545 591 37 $\begin{array}{c} - 682 \\ 1068 \\ -2692 \\ -1121 \end{array}$ -14271909
2578 -1063 844 -153 2541058 -2798 -1368 1527 S -1219 412 - 890 551 - 432 1575 - 461 466 - 397 $\begin{array}{c} -2889 \\ -1772 \\ 1405 \\ -606 \end{array}$ 2276 2745 891 $\begin{array}{c} 2107 \\ -1710 \\ 11112 \\ -861 \\ 708 \end{array}$ -1984 1181 - 890 724 -2735 1305 - 612 378 $\begin{array}{c} 592 \\ - 744 \\ 1062 \\ - 2513 \\ - 554 \end{array}$ - 599 888 -1884 1087 $\begin{array}{c}
 - 775 \\
1110 \\
-2599 \\
- 671 \\
1710
\end{array}$ 7 879 - 336 - 80 - 649 - 649 - 250 1165 --2731 --851 1611 --622 -1618 1618 2400 - 785 $\begin{array}{c} -2927 \\ -1167 \\ 1452 \\ -561 \\ 329 \end{array}$ 2074 2530 795 438 2247 1250 905 716 594 -1954 1171 -467 268 -1763042 - 928 493 - 313 559 282 214 210 369 197 887 887 887 1451 1451 3 3 3 6 6 970 970 970 970 970 970 1069 -1140 1520 -3340 5 571499320986632116 7 880 501 655 0 0 -1389 1646 -3441 11 2621 - 936 1005 -2074 833 2114 -715n = 1--1987 1118 2112 -- 682 378 1657 2116 - 631 333 - 211 Coefficients of $x \frac{20}{\lambda_r} i p_{s^m}$ Coefficients of $x \frac{20}{\lambda} i \rho_{-s^m}$

TIDES IN OCEANS BOUNDED BY MERIDIANS

 $1575 \\ -1063$

- 890

-1710

-1219 903 -725

-1164

892
539
649
137
61

1217 - 997

-2123178

 $\begin{array}{c} 2387 \\ -1252 \end{array}$

Coefficients of $x \frac{\lambda_r}{\lambda_r} p_{s^m}$

S

-501

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES ∞ PHILOSOPHICAL THE ROYAL TRANSACTIONS COLLECTY SOCIETY $ip_r^n=i\Pi_r^n+x\cdot rac{20}{\lambda_r}\Big\{rac{1}{2}ip_r^n+\sum\limits_{s,m}eta_{r,\,s^{,\,m}}p_s^m+\sum\limits_{s,\,m}eta_{r,\,-s^{,\,m}}p_{-s}$ (Coefficients to 4 places of decimals.) n = 4TABLE VII MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES TRANSACTIONS SOCIETY =ur=2ш

											653	-1053	2726	1293	1282
											-1025	2820	1554	-1497	1818
											2879	1970	-1390	623	2778
											2937	-1346	662	419	4762
						- 548	718	-1054	2567	768	562	-851	1804	-1248	1282
						721	-1087	2652	917	-1659	682 —	1709	-1471	-2419	1818
						-1102	2770	1139	-1564	630	1509	-1780	-2498	822	2778
						2904	1515	-1424	585	352	-2190	-2652	848	474	4762
						2436	-1250	549	-329	222	-3211	1021	- 558	361	1.0000
536	- 599	726	-1028	2392	253	_ 511	829	-930	2012	– 756					1282
-656	774	-1070	2447	300	-1836	647	-934	1980	- 895	-2215					1818
854	-1137	2530	369	-1773	661	- 907	1921	-1096	-2237	755					2778
-1261	2672	478	-1674	614	- 357	1768	-1406	-2275	739	414					4762
2962	671	-1494	534	-302	199	-1907	-2362	726	-392	253					1 · 0000
1042	-1048	357	-192	122	- 84	-2773	797	-408	253	- 173					3.3333 1.0000
1 2	4	9	œ	10	12	3 4	9	œ	10	12	5 6	∞	10	12	
				us	y' 100 100 100 100 100 100 100 100 100 10	х ј	:O S	циa	ioí	Нэо	D				20/2,

A. T. DOODSON

										(a)															(<i>p</i>)										
		(/ _E %	:	:	6 –	ĸ	- 1	- 1	:	- 3	4	- 1	0	_	-	- 1	0	3	- 3	—	0	0	0	_ 1	2	0,		0	0	-	0	>		
			82	÷	į	28	-14	33	1	:	8	6 –	63	_	3	- 3	1	0	6 -	∞	- 3	_	_	1	တ	9	0	27 -	- 	- 1	7		- 		
	•	$C: p_r^n \text{ and } p_{-r}^n$	×	÷	;	-65	48	8	- 3	÷	-30	27	4	0					28	-20	6	 (- 3	က	-13	16	0 1	 44 r	o	7	3	 - 	1		
p_{-r}^{n} .		C: pr" 8	_	:	:	306	-100	50	- 28	:									- 47	69	- 29	6	4	7	6	- 28	9 ,	- c	S						
, p_r^n and p_{-r}^n				_	သ	S	_	6		တ	ro	7	6	11	S	7	6		7	4	9	∞ ∞	10	12	4	9	တင္	01 9	<u>'</u> 2	9	∞ <u>;</u>	10	7		
			u						, ,	က					ιĊ				1						8		•			ıc					
ip,																							-												
ip_{r}^{n} , ip_{-r}^{n}		1	, ⁸ x	:	:					:									7	8	က	4	5	7	_ 7	9	47 r	n 0	3	က	0	- 5	-	-	00
, i∏"	nals.)		ء ×	÷	:	- 2	73	-	0	:	_	2	-	0					-21	24	%	-13	14	_ 7	22	-17	11 :	4.	x	-10		⊙ ₹	 	4	
)R II_,"	f decir	nd 1/b_r"	×	:	;	12	9	3	-	÷	-	1	_	0					57	61	30	31	-40	21	-65	47	82 9	42	77.7	22	က	—16 o	n		
Expansions for Π_{-r} , $i\Pi_{-r}$	(4 places of decimals.)	$B: \iota p_r^n \text{ and } \iota p_{-r}^n$	1	:	:					;									-199	276	. 81	119	91	. 78	152	134	83	3 {	66	7	6 1		٦		
PANS	(4 p							_		•			_								-	-	_	1		1		_	1						_
IN Ex			7	2	4	9	ω	10	12	4	9	x	10	12	9	∞	10	12	_	æ	ľ	7	တ	11	က	ιO	<u> </u>	ລ <u>ະ</u>	Ī	ro	_	ი :	77	7	11
$\frac{H}{h}$	•	'	, u	2						4					9				0						7					4				9	
NTS OF		1	\ _E %																ıc	8	က	4	4	61	<u> </u>	ĵ.	4 ≀	n c	<i>3</i>	က	0	- 12	-	- 1	0 0
COEFFICIENTS			27 28	-	7	- 1	0	<u>, , , , , , , , , , , , , , , , , , , </u>	- 1		- 3	0	63	-	0	2	_	-	-16	25	-10	-12	13	_ 7	21	-16	-11	14	×	-10	0	9 -	1	4	
ပ္ပိ	į	d 111-r"	×	ıo	8	ဇာ	က	- 3	ಣ	9 –	×	2	4 -	4	0	- 2	- 1	1	41	-64	35	82	-38	20	19 —	44	82 5	-42	77	22	S.	—17 o	'n		
	;	A: Π_{-r} and $\iota\Pi_{-r}$	—																-167	272	92	-111	87	75	152	124	98 98	99 5	90						
	•	A:																			·			1		Ï	1								
			7	7	4	9	∞	10	12	4	9	œ	10	12	9	∞	10	12	1	3	ľ	7	6	11	က	ß	^	ກ <u>;</u>	T	S	_	თ <u>-</u>	T T	7	9 11
			u	_						က					3				0						23					4				9	

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES TRANSACTIONS SOCIETY

TABLE IX

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

TRANSACTIONS SOCIETY

(a)

TIDES IN OCEANS BOUNDED BY MERIDIANS

313

(p)

0 2 0 9 $C: p_i^n$ and p_{-r}^n -3750 49 5464 Coefficients of p_1 in Expansions for ip_r , ip_{-r} , p_r and p_{-r} . -238677 516 222124 205 120 1.0000 81 8 10 12 6 8 10 12 (4 places of decimals.) S κ2. | -3645 $B:ip_r^n$ and ip_{-r}^n 134 -1111107 Π -107-15895 68 21 -406-19752257 282 246 -193-190164 -155820 20 31 405 245 165 1002277 182 821 -4187471 10 10 12 5 7 9 11 9 O 9 0

VOL. CCXXXV--A

2 T

MATHEMATICAL,
PHYSICAL
& ENGINEERING
SCIENCES

TRANSACTIONS SOCIETY A

MATHEMATICAL,
PHYSICAL
& ENGINEERING
SCIENCES

TRANSACTIONS SOCIETY A

314

A. T. DOODSON

(q)

ζ

TABLE X

1	γ°2 \	:		12	- 1	_	:	6	∞	- -	က	4	- 2	0	7	9	က	- -	-	9 –	4	_	7	-	33	0	7 -	_	
	**	:		-31	4	က	:	21	-21	က က	-20	6 –	8	1	-21	. 61	9	 က <u>-</u>	r 21 	15	-13	ا ت	 ∞ □	 	-12	7	4 (- 2	
	×33	:		87	%	6	:	-75	09	$-\frac{10}{5}$	30	23	- 16	2	99	-54	18	6 -	7	— 64	40	22	- 29	17	37	4	- 25	16	
$C: p_r^n \text{ and } p_{-r}^n$	×	÷		-215	. 12	23	:	52	-129	- - - - - - - - - - - - - - - - - - -	-200	- 95	12	ro	-152	177	89 –	- 26	45 - 21	140	-131	-57	86	- 48 8	-132	1	71	98 –	
C: #	₩	:	 1191	375	-170	88	:	-1076	377	-183 - 104	96	15	_ 15	12	955	-783	222	187	198	-1099	546	340	-347	346	455	157	$-\frac{159}{159}$	153	
	T	:	:				;								-3448	2124	- 700	371	- 252 154	5750	-1625	823	-503	339	_ 7	12		13	
(.cm	7	- (so ro	7	6	П	က	S	7	9 11	īC	7	6	11	67	4	9	∞ ⊆	12	4	9	∞ -	10	12	9	∞	10	12	
	\ u	_					တ				ß				, (က					S				
(+ piaces of uccililats).	/ °2°	:	:	- 2	0	0	÷	67	1	0 1	1	1	_	0	16	-19	7	12	5	-19	13	11	-13	9	11	_	_ 7	4,	4 -
	**													1									1						
- 1		:		9	1	_ 1	:	4 -	9		ro	8	- 1	0	-46	54	-18	-32 30	90 —14	51	-36	-29	33	-16	_33	, ,(15	_ 7	$\frac{19}{1}$
	κ_3	:	${40}$ ${-10}$		5 - 1	0 - 1	:	31 - 4	-24 6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ro		7 - 1	1 0			I	1	- 62 38 14	-151 51		1	_ 92 33	I	91 – 33			27 - 7	-38 - 19 $3 - 1$
$\inf_{i \neq -r} i p_{-r}$: :	• •	-20	-12 5 -1	-14 0 -1	:	-52 31 -4		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	rc	- 11	7 –	-1 - 1 0		-135	48	83	١		92	<u> </u>	- 95	I	·	ဇ	46 	1	
B: ip_r^n and ip_{-r}^n	\mathcal{K}^3	::		-20	-12	- 14	:	-52	85 –	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38	$\frac{1}{56}$ - 11	- 10 7 -	0 - 1 - 1 0	125	-135	-117 48 -	-269 83 -	- - - - - - -	-151	-273 92 $-$	-218 79 $-$	227 - 92	43	91	44 3	88 – 46	27 —	
B: ip_r^n and ip_{-r}^n	\mathcal{X}^2 \mathcal{X}^3	1.0000		74 - 20	-12	- 14	: :	-52	85 –		38	$\frac{1}{56}$ - 11	- 10 7 -	-1 - 1	356 125	432 -135	140 —117 48 -	586 — 269 83 -	-104 38 $-$	322 -151	527 —273 92 —	638 —218 79 —	-475 227 -92	_ 92 43 _	776 —240 91	243 44 3	-232 88 -46	– 29 27 –	188 - 38 - 1 - 1 3
B: ip_r^n and ip_{-r}^n	\mathcal{X}^2 \mathcal{X}^3			-398 74 -20	214 - 12	-135 - 14	4	-52	-24785 -			$\frac{1}{1}$ 56 - 11	0 - 10 7 -	0 - 1 - 1	1950 1184 —356 125	-497 -937 432 -135	140 —117 48 -	_ 267 586 —269 83 -	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1560 322 -151	82 527 -273 92 -	- 50 638 -218 79 $-$	-475 227 -92	-25 391 -92 43	776 —240 91	222 243 44 3	-145 - 232 88 - 46	210 - 29 27 -	188 - 38 - 1 - 1 3

TABLE XI

u Ø

IN OCEANS BOUNDED BY MERIDIANS

315

9

(0)

 $^{\circ}$

316

A. T. DOODSON

(q)

		,		6	77.	77	_		6	∞	_	_	∞	4	2	0		7	9	က	-		-	2	4	\circ	2	-	9	 (61				
		ξ.	:	:	l	ļ	I	:	-		I	1												İ							I				
		4.7	:	:	00	4	00	:	22	-22	4	7	-20	-15	7	_		-19	16	- 4	(%) 	က	1	21	-111	6 -	10	10	-16	4	6	 ro			
		£ %	÷	:	102	ا 3 ∞	_ 7	:	- 79	63	-13	4	88	32	-21	y(63	- 45	I	13	- 11	4	_ 74	28	34	-32	15	09	10	-27	15			
r •	$C: p_r^n \text{ and } p_{-r}^n$	2.2	:	:	394 160	98 	14	:	105	-155	42	18	-306	-187	95	- 24		-143	131	-37	- 33	35	-10	214	9/ _	-103	108	- 48	-204	-61	113	_ 71			
p_r^n and p_{-r}^n .	$C: p_r^n s$	×	:	: 1	040 000	- 151 - 151	94	:	-1031	707	-352	218	1353	457	-211	125		802	-503	81	196	-163	135	-1183	327	414	-354	319	691	172	-179	186			
ip_{-r} , p_r^n		, ,	:	:				1.0000										-1511	-350	325	-187	126	- 100	886	50	- 33	52	_ 27	_ 294	196	-140	120	:	ŀ	
ip_r^n , i		7	_	ကျ	0 1	, 0:	, , , , , , , , , , , , , , , , , , , 	ෆ	ıo	7	6	11	ro	7	6	11		01	4	9	00	10	12	4	9	∞	10	12	9	∞	10	12			
	, (ı ı						က					ro											co					ß						
p_3 in Expansions for i (4 places of decimals.				:	4 c	7 C	0		33	2	0	0	2		0	0		15	[]	7		01	5	×	Π	10	[2	ıs	14	0	9	& ·	∞	0	
Exp. aces	(, 15%	:	:									l					_			_	-10		-18	_	_	-12		,(١		1		
p_3^3 IN (4 pl	-	4%	:	:	01-	n c		;	-12	6	-	_ 1	_ 2	9	_ 2	0		-41	48	-15	-28	27	-13	50	-33	-28	31	-15	-40	61	17	-10	23	0	4
OF	$-r^n$	°2	÷	:	41	91 -	7 27		4	_ 25	တ	4	_ 14	-16	9	_		110	-112	41	70	- 70	32	-145	81	72	- 85	41	136	-10	45	28	- 84	12	w
Coefficients	and ip	2,2	:	:	88 9 	2 -	_ 18		-148	101	-16	-10	- 16	106	- 30	6		-293	332	68 —	-198	169	06-	329	-226	-175	199	-104	-427	83	118	- 92	338	-16	- 38
Ö	$B: ip_r^n$	×	÷	:	734	782	e7 – 79		730	- 288	150	- 91	09 —	- 5	8	%		790	-413	118	238	-219	202	-1396	531	333	-425	433	1951	-245	-274	364	-1243	182	- 19
			:	÷					ţ								AND DESCRIPTION OF THE PROPERTY OF THE PROPERT	699 —	-565	111	-22	9	<u> </u>	4390	-2309	921	-527	345	-6207	1878	_ 991	625	61	_ 7	00
		r	2	4	တ	∞ <u></u> ⊆	12	4	9	· ∞	10	12	9	∞	10	12		—	ಣ	ĸ	7	6	II	ε	ιO	7	6	I	ro	7	6	11	^	6	-
	(, z	01					4	t				9					0						2					4				9		

MATHEMATICAL, PHYSICAL & ENGINEERING PHILOSOPHICAL THE ROYAL TRANSACTIONS COLLECTIVE SOCIETY MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES TRANSACTIONS COLLEGYAL SOCIETY

TABLE XIII

Coefficients of ip_{\downarrow}^2 in Expansions for ip', ip_{-r} , ip_{-r}^n , p_r^n and p_{-r}^n .

(4 places of decimals.)

u $^{\circ}$

IN OCEANS BOUNDED BY MERIDIANS

317

(a)(*p*) $C: p_r^n \text{ and } p_{-r}^n$ -163-1146647 4760 -142273 18 21 16 40 B: ip_r^n and ip_{-r}^n 100 -10191 81 251 160 115 $\frac{527}{310}$ ١ 2666 860 137 1.0000138

MATHEMATICAL,
PHYSICAL
& ENGINEERING
SCIENCES TRANSACTIONS SOCIETY A

TABLE XIV

MATHEMATICAL,
PHYSICAL
& ENGINEERING
SCIENCES

TRANSACTIONS SOCIETY A

318

A. T. DOODSON

(q)

		/ °%	:	:	77 9 –	0	1	÷	9	10	-	0	က	5	2	- 1	- 3	ဢ	-	0	0	0	īĈ	- 2	-	61	-	1	3	က	12			
		χ^4	:	:	-55 15	-1	- 2	:	-14	10	0	4	32	3	_	4	11	-10	ဇ		- 2	_	9 –	S	4	- 5		13	4	0	- 2			
	u.	x^3	:	: :	73 - 40	4	9	:	70	- 43	က	- 1	56	-40	21	%	- 38	19	9 -	9 –	9	- 3	09	- 14	-20	20	-12	-26	-24	27	-22			
κ	$C: p_r^n$ and p_{-r}^n	z X	÷			က	_ 15	:	- 45	39	49	-62	351	118	31	- 55	64	_ 92	27	16	-21	7	- 40	57	30	-53	12	119	-53	-26	လ			
p_{r}^{n} AND p_{-r}^{n}	C:#	н	:	.:	124	- 2	9	:	1594	-490	209	-108	1199	-517	226	-127	- 638	118	- 33	86 –	104	-102	1110	-355	-233	315	- 343	-1580	202	209	- 316			
ip_{-r}^n, p_r^n		1	:	:				:									212	193	- 38	လ	4	6 -	-5095	2466	-1081	644	– 431	6498	-2059	1118	- 716			
EXPANSIONS FOR ip_r , places of decimals.)	`	*	-	es u	o /	6	11	8	ß	7	6	11	ß	7	6	Π	2	4	9	œ	10	12	4	9	∞	10	12		∞	10	12			
sions 1 of decii		1 2	_					အ					3						•				8					ιĊ						
IN EXPANSIONS FOR i_1 (4 places of decimals.)	- 4	χ_{5}	:	:	 	0	0	:	4 -	73	- 1	0	5	67		0	%	11	- 3	9 –	9	- 2	12	_ 7	9	7	03	9 –	- 2	rO	- 3	; —	61	- 2
OF ip_4^4 II		**	:	:	0 8	0	1	:	7		2	က	-17	_	_	_	24	53	œ	18	-16	7	28	17	19	-19	7	28	_		0	-23	4	- 3
									,	ı	ı		1	l			2				ĺ		_2			ı		•		ı				
CIEN	-	x^3	:	:	61 -	- 1	0	:	_ 50	23	6 -	4	•	15 –	- 10 -	4	- 60 2	I			ı	- 14	1		- 56	•	-21		- 28 -	47	- 29	10	17	- 19
COEFFICIENTS	and <i>ip_r</i>	χ^2 χ^3	:		-31 9	1 - 1	18 0	:	-44 - 50	#		31 4	•	-27 15 $-$	-10 - 10	8 4	09 —	5 59 –		7 — 46	. 40 -	40 — 14	I	3 – 38	8 — 56	•	13 - 21	. — 63	1	<i>- 77 47 -</i>	1	-274 10	- 11 17	1
COEFFICIEN	B: ip_n and ip_{-n}		:		-435 40 -13 240 -31 9	1 -	18	:	— 44 —	- 34		31	-130 - 40	7	13 –	∞	09 —	-235 59 -	23 - 19	167 - 46) 40 –	40 —	-154 100 $-$	93 - 38	8 — 56	-117 52 -	13 –	272 - 63	14 —		- 30 -	-274		-21 $-$
Coeppicien	B: ip_n and ip_{-n}	22 %	: :		40 — — 31	1 -	18	:	— 44 —	- 34	- 2 $-$	31	-130 - 40	-27	13 –	∞	- 370 175 - 60	- 76 -235 59 -	23 - 19	167 - 46	-100 40 -	40 —	-154 100 $-$	59 93 - 38	-524 178 -56	360 —117 52	-267 13 $-$	272 - 63	-911 14 $-$	705 - 77	_ 556 _ 30 _	-392 -274	- 11	-289 - 21 -
COEFFICIEN	$B:ip_n$ and ip_{-n}	22 %		207	40 — — 31	1 -	18	:	— 44 —	556 - 34	-299 - 2 -	31	-130 - 40	351 - 27	-176 13 $-$	∞	80 - 370 175 - 60	110 - 76 -235 59 -	61 23 -19	- 7 $-$ 114 167 $-$ 46	3 54 -100 40 $-$	-1 - 22 40 -	1400 - 154 100 -	-278 59 93 -38	268 - 524 178 - 56	-170 360 -117 52 $-$	120 - 267 13 -	- 777 272 $-$ 63	29 - 911 14 -	705 - 77	19 — 556 — 30 —	-234 -392 -274	169 360 -11	-128 - 289 - 21 -

TIDES IN OCEANS BOUNDED BY MERIDIANS

TABLE XV

Six Simultaneous Equations in p_1^1 , ip_2^2 , ... H/h, with Coefficients as Powerseries in x^i .

					SEKIES .	III A.				
	t	p_1^{1}	$ip_{2}{}^{2}$	p_{3}^{1}	p_3^3	ip_4^2	ip_4	H/h		
	0	-1.0000	•••				•••	-0.7675		
	1	2.6450	$-2 \cdot 6114$	1.9224	0.9757	0.4906	-0.1379	0.0327	= 0	
	2	0.1663	-0.3401	0.3098	-0.3058	-0.0131	0.2641	-0.0136		
	3	-0.0325	0.0703	-0.0754	0.0689	-0.0260	-0.0297	0.0044		, ,
	4	0.0148	-0.0315	0.0301	-0.0296	0.0046	0.0193	-0.0013		(<i>a</i>)
	5	-0.0053	0.0107	-0.0110	0.0105	-0.0025	-0.0057	0.0005		
	6	0.0018	-0.0040	0.0041	-0.0037	0.0008	0.0027	-0.0002		
	7	-0.0006	0.0013	-0.0014	0.0012	-0.0003	-0.0009	0.0001		
-	0	• • •	-1.0000	•••		•••	•••	0.5284		
	1	-0.8705	0.8686	1 · 2175	0.6767	0·4567	0.5593	-0.0235	= 0	
	2	-0.1133	0.2955	-0.2445	0.2643	0.0512	-0.2229	0.0097	_ 0	
	3	0.0233	-0.0590	0.0592	-0.0601	0.0121	0.0245	-0.0037		
	4	-0.0105	0.0247	-0.0225	0.0237	-0.0014	-0.0158	0.0012		(b)
	5	0.0036	-0.0080	0.0081	-0.0080	0.0014	0.0040	-0.0012		
	6	-0.0014	0.0030	-0.0029	0.0029	-0.0004	-0.0018	0.0004		
	7	0.0005	-0.0010	0.0010	-0.0010	0.0004	0.0006			
-								0.1054	······································	
	0			-1.0000				-0.1954	^	
	1	0.3205	0.6086	-0.5605	0.0772	0.4340	-0.0426	0.0150	= 0	
	2	0.0516	-0.1223	0.1753	-0.0815	-0.0026	0.0769	-0.0045		
	3	-0.0127	0.0297	-0.0329	0.0262	-0.0031	-0.0183	0.0017		(c)
	4	0.0051	-0.0113	0.0123	-0.0103	0.0013	0.0068	-0.0006		()
	5	-0.0019	0.0040	-0.0043	0.0037	-0.0006	-0.0023	0.0002		
	6	0.0007	-0.0014	0.0015	-0.0013	0.0002	0.0008	-0.0001		
-	7	-0.0002	0.0005	-0.0005	0.0004	-0.0001	-0.0003	• • •		
	0			•••	-1.0000	•••	•••	•••		
	1	0.1626	0.3383	0.0774	$0 \cdot 2796$	-0.4757	-0.3169	-0.0064	= 0	
	2	-0.0509	0.1321	-0.0814	0.1924	0.0455	-0.0997	0.0038		**
	3	0.0116	-0.0301	0.0260	-0.0411	-0.0015	0.0185	-0.0014		(d)
	4	-0.0049	0.0119	-0.0103	0.0141	0.0008	-0.0076	0.0004		(a)
	5	0.0019	-0.0039	0.0039	-0.0044	0.0002	0.0025	-0.0001		
	6	-0.0006	0.0013	-0.0014	0.0015	-0.0001	-0.0008	•••		
_	7	0.0002	-0.0004	0.0005	-0.0005	• • • •	0.0003	•••		
	0	•••	•••	•••	•••	-1.0000	• • •	• • •		
	1	0.0490	-0.1370	0.2606	-0.2854	-0.0643	0.0356	0.0040	= 0	
	2	-0.0013	0.0153	-0.0015	0.0274	0.0527	-0.0285	-0.0006		
	3	-0.0026	0.0036	-0.0019	-0.0009	-0.0041	-0.0024	0.0003		
	4	0.0005	-0.0004	0.0007	0.0005	0.0021	-0.0008	-0.0001		(e)
	5	-0.0002	0.0004	-0.0003	0.0002	-0.0004	-0.0002	•••		
	6	0.0001	-0.0002	0.0001	-0.0001	0.0000	0.0001	•••		
	7	•••	0.0001		•••	•••		•••		
~	0	• • •	•••				-1.0000	• • •		
	1	-0.0138	0.1678	-0.0255	-0.1901	0.0356	0.0976	0.0006	= 0	
	2	0.0264	-0.0668	0.0461	-0.0597	-0.0284	0.1518	-0.0015		
	3	-0.0030	0.0073	-0.0109	0.0111	-0.0024	0.0007	0.0004		
	4	0.0019	-0.0047	0.0041	-0.0045	-0.0008	0.0050	-0.0002		(f)
	5	-0.0006	0.0012	-0.0015	0.0015	-0.0001	-0.0003	0.0001		
	6	0.0002	-0.0005	0.0005	-0.0005	0.0000	0.0005	•••		
	7	-0.0001	0.0002	-0.0002	0.0002	•••	-0.0002	•••		
	-	m • •								

Terms with t = 7 were obtained from terms with t = 6 by dividing by -3 and additional terms were similarly obtained.

A. T. DOODSON

Table XVI

Equations Resulting from XV (e) and (f) after Eliminating either $ip_4{}^2$ or $ip_4{}^4$.

t	p_1^1	ip_{2}^{2}	p_3^1	p_3	ip_4^2	ip_4^4	\mathbf{H}/h	
0	•••					-1.0000	•••	
1	-0.0138	0.1678	-0.0255	-0.1901		0.0333	0.0006	= 0
2	0.0273	-0.0609	0.0537	-0.0821		0.2120	-0.0013	
3	-0.0020	-0.0014	-0.0140	0.0264		-0.0008	0.0001	
4	0.0001	0.0000	0.0002	-0.0015		$0\cdot 0002$	-0.0001	
5	-0.0001	-0.0002	-0.0005	0.0010		0.0001	-0.0001	
6	-0.0002	0.0001	0.0000	-0.0001		0.0000	0.0000	
							na n	- 14-44-4
0			•••		-1.0000		•••	
1	0.0490	-0.1370	0.2606	-0.2854	0.0333		0.0040	== 0
2	-0.0066	0.0346	-0.0278	0.0485	0.2120		-0.0010	
3	-0.0086	0.0157	-0.0389	0.0430	-0.0008		-0.0003	
4	0.0001	-0.0012	-0.0007	-0.0008	0.0002		0.0000	
5	•••	0.0002	-0.0010	0.0015	0.0001		-0.0001	
6			-0.0001	-0.0002				

TABLE XVII

Final Equations for ${p_3}^1$ and ${p_3}^3$ in terms of H /h, ${p_1}^1$ and $i{p_2}^2$.

t	p_1^1	$ip_{2}{}^{2}$	p_{3}^{1}	p_{3}^{3}	\mathbf{H}/h	
0	•••	•••		-1.0000	•••	
1	0.1626	0.3383		-0.2143	-0.0215	= 0
2	0.0352	0.3583		$1 \cdot 2823$	0.0393	
3	-0.2066	-0.3701		0.0814	-0.0007	
4	0.0119	-0.1169		-0.4183	-0.0119	
5	0.0517	0.0873		0.0000	0.0010	
6	-0.0043	0.0095		0.0429	0.0009	
7	-0.0030	-0.0050		-0.0023	-0.0001	
8	0.0001	0.0000		-0.0001	0.0000	
		nanamaniliya qua. Makka ayla kashari k				-
0	•••	•••	-1.0000		-0.1954	
1	0.3205	0.6086	-0.2143		0.0826	= 0
2	-0.0249	-0.3735	$1 \cdot 2823$		$0 \cdot 1464$	
3	-0.3350	-0.4162	0.0814		-0.0443	
4	0.0324	0.1890	-0.4183		-0.0293	
5	0.0818	0.0754	0.0000		0.0061	
6	-0.0068	-0.0238	0.0429		0.0013	
7	-0.0045	-0.0025	-0.0023		-0.0001	
8	0.0000	0.0002	-0.0001		0.0001	

TABLE XVIII

Final Equations for ip_2^4 and ip_4^4 in terms of p_1^1 , ip_2^2 and H/h.

TIDES IN OCEANS BOUNDED BY MERIDIANS

	. •	4 -	4 -	1.,	1 - /	
t	p_1^1	ip_2^2	$ip_4{}^2$	ip_4	H/h	
0	. •••	•••		-1.0000	•••	
1	-0.0138	0.1678		-0.1810	0.0056	= 0
2	-0.0147	-0.1048		1.5014	-0.0097	
3	0.0194	-0.2833		0.0833	-0.0032	
4	0.0092	0.0960	, 1	-0.6928	0.0057	
5	-0.0085	0.1165		-0.0022	-0.0001	
6	-0.0007	-0.0286		0.1314	-0.0009	
7	0.0011	-0.0166		-0.0041	0.0002	
8	-0.0001	0.0031		-0.0089	0.0001	
9	-0.0002	0.0004		0.0005		
10	0.0000	0.0001		-0.0001		
0	• • •	•••	-1.0000		•••	
1	0.0490	-0.1370	-0.1810		-0.0469	= 0
2	0.0410	0.0673	1.5014		0.0330	
3	-0.0904	-0.0013	0.0833		0.0256	
4	-0.0287	-0.0153	-0.6928		-0.0166	
5	0.0386	0.0252	-0.0022		-0.0049	
6	0.0081	-0.0013	0.1314		0.0026	
7	-0.0064	-0.0055	-0.0041		0.0004	
8	-0.0009	0.0002	-0.0089		-0.0001	
9	0.0004	0.0003	0.0005		-0.0001	
10	0.0000	0.0001	-0.0001		0.0000	

TABLE XIX

Equations for $p_1{}^1$ and $ip_2{}^2$ in terms of H/h .

1			1.	1 -	<i>'</i> .		
t	p_1^1	$ip_{2}{}^2$	\mathbf{H}/h	p_1	ip_2^2	\mathbf{H}/h	
0	-2.0000	•••	-1.5350	••	-2.0000	1.0568	
1	4.4994	$-5 \cdot 2228$	-1.2926	= 0 -1.74	410 0.9466	-0.1051	= 0
2	7.5150	0.0747	$2 \cdot 6482$	0.05	7.0201	-1.6126	
3	$-8 \cdot 1182$	$9 \cdot 1098$	$1 \cdot 5472$	$3 \cdot 03$	-2.6618	0.3256	
4	$-5 \cdot 4337$	-1.4492	-0.4766	-0.48	-4.6925	-0.0482	
5	$1 \cdot 7402$	-0.9809	0.4420	-0.32	257 1 · 7676	-0.0865	
6	-3.8514	$1 \cdot 1052$	-1.9492	0.36	-3.9673	1.3040	
7	5.8544	-7.0801	-1.3747	-2.36	311 1 · 5923	-0.2300	
8	6.6381	0.8926	1.8099	0.29	989 6·0120	-0.9434	
9	-5.6241	$5 \cdot 7636$	0.7859	1.92	$203 - 2 \cdot 3473$	0.2004	
10	-3.4528	$-1 \cdot 1551$	-0.7271	-0.38	-2.9314	0.3134	
11	$2 \cdot 3129$	-2.0497	-0.2089	-0.68	323 1 · 1292	-0.0716	
12	0.8847	0.4749	0.1554	0.15	578 0·7099	-0.0556	
13	-0.5063	0.3828	0.0273	0.12	-0.2715	0.0132	
14	-0.1153	-0.0959	-0.0174	-0.03	-0.0870	0.0050	
15	0.0578	-0.0362	-0.0012	-0.01	20 0.0334	-0.0012	
16	0.0067	0.0098	0.0008	0.00	0.0043	-0.0002	
17	-0.0027	0.0012	-0.0001	0.00	-0.0016	0.0000	
18	-0.0001	-0.0004	0.0000	-0.00	0.0000	0.0000	
19	0.0000	0.0000	0.0000	-0.00	0.0000	0.0000	
				•			

A. T. DOODSON

TABLE XX (a)

 $\beta = 10.948.$ Values of Coordinates.

RESONANT CASE. RELATIVE VALUES ONLY.

42	**	h n- n	40	A*	ih n- n	42	r	$p_{-r}^{n}\pi_{r}^{n}$	n	r	$ip_{-r}^{n}\pi_r^{n}$
n	r	$p_r^n \pi_r^n$	n	r	$ip_r^n\pi_r^n$	n	r	•		,	
1	1	0.5642	2	2	-0.1046	1	2	-0.0514	0	1	-0.1713
	3	0.0089		4	0.0047		4	-0.0025		3	-0.0431
	5	0.0035		6	-0.0016		6	0.0007		5	0.0045
	7	-0.0008		8	0.0006		8	-0.0005		7	-0.0027
	9	0.0004		10	-0.0003		10	0.0003		9	0.0014
	11	-0.0002		12	0.0001		12	-0.0002		11	-0.0008
3	3	0.0018	4	4	-0.0029	3	4	-0.0348	2	3	-0.0985
	5	0.0040		6	-0.0006		6	0.0089		5	0.0105
	7	-0.0009		8	0.0002		8	-0.0041		7	-0.0058
	9	0.0004		10	-0.0001		10	0.0022		9	0.0029
	11	-0.0002		12	0.0001		12	-0.0014		11	-0.0017
5	5	-0.0001	6	6	-0.0001	5	6	-0.0019	4	5	-0.0015
	7	0.0001		8	* * *		8	0.0002		7	-0.0017
	9			10	•••		10	0.0000		9	0.0009
	11			12	•••		12	-0.0001		11	-0.0006
									6	7	0.0001
										9	-0.0001
										11	

Table XX (b)

$\beta = 20.$ Values of Coordinates.

Coefficients of H/h.

					COLLINGIE	0.		• •			
n	r	$p_r^n \pi_r^n$	n	r	$ip_r^n\pi_r$	n	r	$p_{-r}^{n}\pi_{r}^{n}$	n	r	$ip_{-r}^{n}\pi_{r}^{n}$
1	1	0.7557	2	2	-0.0545	1	2	-0.1154	0	1	-0.2840
_	3	0.0008		4	0.0063		4	0.0078		3	-0.0574
	5	0.0092		6	-0.0020		6	-0.0015		5	0.0091
	7	-0.0022		8	0.0008		8	0.0003		7	-0.0055
	9	0.0010		10	-0.0004		10	-0.0001		9	0.0028
	11	-0.0006		12	0.0002		12	-0.0001		11	-0.0018
3	3	0.0151	4	4	-0.0037	3	4	-0.0182	2	3	-0.1088
3	5	0.0068	•	6	-0.0003		6	0.0064		5	0.0132
	7	-0.0014		8	0.0001		8	-0.0032		7	-0.0088
	9	0.0006		10	-0.0001		10	0.0019		9	0.0044
	11	-0.0003		12	0.0001		12	-0.0013		11	-0.0029
5	5	0.0006	6	6	-0.0002	5	6	-0.0023	4	5	-0.0085
3	7	0.0004	Ü	8	-0.0001		8	0.0005		7	-0.0009
	9	-0.0001		10			10	-0.0002		9	0.0005
	11			12	•••		12	•••		11	-0.0005
									6	7	-0.0004
									-	9	-0.0001

 $0 \cdot 0001$

11

TIDES IN OCEANS BOUNDED BY MERIDIANS

Table XX (c)

VALUES OF COORDINATES.

 $\beta = 30.63.$

323

RESONANT CASE.	RELATIVE	VALUES	ONLY
----------------	----------	---------------	------

n	r	$p_r^n \pi_r^n$	n	r	$ip_r^n\pi_r^n$	n	r	$p_{-r}^n \pi_r^n$	n	r	$ip_{-r}^{n}\pi_{r}$
1	1	0.5642	2	2	0.3500	1	2	-0.0544	0	1	-0.0130
	3	0.1177		4	-0.0200		4	0.0345		3	-0.0418
	5	0.0004		6	0.0083		6	-0.0113		5	-0.0114
	7	0.0034		8	-0.0030		8	0.0060		7	0.0010
	9	-0.0012		10	0.0014		10	-0.0034		9	-0.0011
	11	0.0007		12	-0.0008		12	0.0023		11	0.0009
3	3	0 · 1700	4	4	-0.0059	3	4	0.0817	2	3	-0.0730
	5	-0.0060		6	0.0086		6	-0.0220		5	-0.0318
	7	0.0057		8	-0.0029		8	0.0118		7	0.0065
	9	-0.0022		10	0.0014		10	-0.0067		9	-0.0049
	11	0.0013		12	-0.0008		12	0.0045		11	0.0035
5	5	0.0088	6	6	-0.0006	5	6	0.0014	4	5	-0.0558
	7	0.0023		8	0.0005		8	0.0032		7	0.0141
	9	-0.0008		10	•••		10	-0.0022		9	-0.0086
	11	0.0005		12			12	0.0019		11	0.0055
									6	7	-0.0061
										9	0.0006
										11	

TABLE XX (d)

VALUES OF COORDINATES.

 $\beta = 40$.

11

COEFFICIENTS OF H/h

					COEFFICIEN	TS O	F 11/	n.			
n	r	$p_r^n \pi_r^n$	n	r	$ip_r^n\pi_r^{rn}$	n	r	$p_{-r}^n \pi_r^n$	n	* r	$ip_{-r}^n\pi_r^n$
1	1	0.1799	2	2	-0.0471	1	2	-0.0481	0	1	-0.1167
	3	-0.0208		4	0.0064		4	0.0011		3	-0.0130
	5	0.0054		6	-0.0021		6	0.0005		5	0.0055
	7	-0.0020		8	0.0009		8	-0.0005		7	-0.0027
	9	0.0009		10	-0.0004		10	0.0004		9	0.0015
	11	-0.0006		12	0.0002		12	-0.0004		11	-0.0011
3	3	-0.0216	4	4	0.0023	3	4	-0.0110	2	3	-0.0201
	5	0.0047		6	-0.0014		6	0.0045		5	0.0092
	7	-0.0017		8	0.0006		8	-0.0025		7	-0.0047
	9	0.0008		10	-0.0003		10	0.0015		9	0.0027
	11	-0.0005		12	0.0002		12	-0.0011		11	-0.0020
5	5 ·	-0.0009	6	6	0.0001	5	6	0.0000	4	5	0.0048
	7	-0.0002		8	-0.0001		8	-0.0005		7	-0.0026
	9	0.0001		10	•••		10	0.0004		9	0.0016
:	11	-0.0001		12	•••		12	-0.0004		11	-0.0011
									6	7	0.0006
										9	-0.0001

A. T. DOODSON

TABLE XXI

Values of ϕ .

β			ficients of $s\theta \sin n \chi \cdot e^{i\sigma t}$		Coefficients of H/h . $i \cos s \theta \sin n \chi$. $e^{i\sigma t}$				
	s	n = 1	3	5	s	n = 2	4	6	
10 · 948*	1	0 · 4907	0.0025	•••	0	0.0495	0.0013	•••	
	3	0.0101	0.0020	0.0001	2	-0.0521	-0.0015		
	5	0.0034	-0.0023	-0.0001	4	0.0036	0.0000	•••	
	7	-0.0008	0.0006	•••	6	-0.0013	0.0003		
	9	0.0003	-0.0003		8	0.0005	-0.0001		
	11	-0.0002	0.0001		10	-0.0002	0.0001		
					12	0.0001	•••		
20	1	0.6554	0.0139	0.0006	0	0.0248	0.0016	0.0001	
	3	0.0036	0.0003	0.0000	2	-0.0284	-0.0021	-0.0001	
	5	0.0090	-0.0039	-0.0002	4	0.0048	0.0004		
	7	-0.0021	0.0009	0.0001	6	-0.0017	0.0002		
	9	0.0009	-0.0005		8	0.0006	-0.0001		
	11	-0.0006	0.0003	•••	10	-0.0003	0.0001		
					12	0.0002	•••		
30.63*	1	0.5127	0 · 1323	0.0071	0	-0.1647	0.0006	0.0001	
	3	0.1199	-0.0462	-0.0023	2	$0 \cdot 1752$	-0.0039	-0.0003	
	5	0.0017	0.0054	-0.0007	4	-0.0153	0.0065	0.0004	
	7	0.0033	-0.0038	0.0009	6	0.0070	-0.0042	-0.0003	
	9	-0.0010	0.0019	-0.0006	8	-0.0025	0.0017	0.0001	
	11	0.0008	-0.0010	0.0002	10	0.0012	-0.0011		
					12	-0.0008	0.0005		
40	1	0 · 1520	-0.0157	-0.0007	0	0.0212	-0.0007	0.0000	
	3	-0.0195	0.0082	0.0003	2	-0.0248	0.0013	0.0001	
	5	0.0050	-0.0030	0.0000	4	0.0048	-0.0013	-0.0001	
	7	-0.0019	0.0012	-0.0001	6	-0.0018	0.0008	0.0001	
	9	0.0007	-0.0007	0.0001	8	0.0007	-0.0004		
	11	-0.0006	0.0004	0.0000	10	-0.0003	0.0003		
					12	0.0002	-0.0001		

^{*} Relative values only for resonant cases.

TIDES IN OCEANS BOUNDED BY MERIDIANS

TABLE XXII

VALUES OF ψ .

β			fficients of $n s\theta \cos n\chi$.	eiot		Coefficients of $H/h \cdot i \cos s\theta \cos n\chi \cdot e^{i\sigma t}$					
	s	n = 1	3	5	s	n = 0	2	4	6		
10.948*	0				1	0.2385	0.0596	0.0013			
	2	-0.0505	-0.0242	-0.0012	3	0.0486	-0.0643	-0.0012	***		
	4	-0.0024	0.0175	0.0010	5	-0.0039	0.0086	-0.0006	-0.0001		
	6	0.0006	-0.0064	-0.0004	7	0.0026	-0.0047	0.0010	0.0001		
	8	-0.0005	0.0028	0.0001	9	-0.0011	0.0024	-0.0008			
	10	0.0002	-0.0019	•••	11		-0.0017	0.0003	•••		
273,39	12	-0.0003	0.0011	•••							
20	0	• • •		•••	1	0.3852	0.0659	0.0043	0.0002		
	2	-0.1097	-0.0122	-0.0013	3	0.0635	-0.0707	-0.0059	-0.0003		
	4	0.0076	0.0098	0.0013	5	-0.0077	0.0109	0.0014	0.0001		
	6	-0.0015	-0.0047	-0.0006	7	0.0055	-0.0071	0.0005	0.0001		
	8	0.0003	0.0022	0.0002	9	-0.0021	0.0037	-0.0005	-0.0001		
	10	-0.0001	-0.0016	-0.0001	11	0.0021	-0.0028	0.0003	•••		
	12	-0.0001	0.0010	•••							
30.63*	0	• • •	•••	•••	1	0.0512	0.0614	0.0210	0.0020		
	2	-0.0438	0.0569	0.0022	3	0.0558	-0.0401	-0.0374	-0.0039		
	4	0.0325	-0.0406	0.0001	• • 5	0.0127	-0.0256	0.0207	0.0025		
	6	-0.0100	0.0163	-0.0015	7	-0.0009	0.0050	-0.0084	-0.0008		
	8	0.0056	-0.0081	0.0019	9	0.0008	-0.0040	0.0072	0.0001		
	10	-0.0026	0.0059	-0.0020	11	-0.0010	0.0034	-0.0031	•••		
	12	0.0025	-0.0036	0.0008							
40	0	• • •	•••		1	0.1500	0.0098	-0.0013	-0.0002		
•	2	-0.0463	-0.0072	-0.0002	3	0.0128	-0.0140	0.0031	0.0004		
	4	0.0012	0.0060	-0.0001	5.	-0.0050	0.0076	-0.0026	-0.0003		
	6	0.0004	-0.0034	0.0002	7	0.0027	-0.0037	0.0015	0.0001		
	8	-0.0005	0.0017	-0.0003	9	-0.0011	0.0022	-0.0014			
	10	0.0002	-0.0013	0.0004	11	0.0013	-0.0019	0.0006	•••		
	12	-0.0004	0.0009	-0.0002				4	• • •		

^{*} Relative values only for resonant cases.

A. T. DOODSON

TABLE XXIII

VALUES OF u.

· β	. 1		fficients of $\sin s\theta \sin n\chi$.	eiot	Coefficients of $\sigma a \cdot H/h \cdot i \cos s\theta \sin n\chi \cdot e^{i\sigma t}$				
	s	n = 2	4	6	s	n = 1	3	5	
10.948*	0		•••	•••	1	-0.5962	-0.0693	-0.0045	
10 0 10	2	-0.1342	-0.0071	0.0001	3	-0.0348	0.0726	0.0068	
	4	0.0041	-0.0009	-0.0001	5	-0.0167	-0.0144	-0.0027	
	6	-0.0078	0.0022	0.0004	7	0.0045	0.0078	0.0007	
	8	-0.0007	-0.0026	-0.0002	9	-0.0027	-0.0020	0.0001	
	10	-0.0045	0.0020		11	0.0018	0.0051	-0.0002	
	12	-0.0017	0.0004	•••					
20	0		•••		1	-0.8622	-0.0469	-0.0055	
	$\overset{\circ}{2}$	-0.2070	-0.0300	-0.0019	3	0.0016	0.0390	0.0083	
	4	-0.0001	0.0117	0.0014	5	-0.0475	0.0006	-0.0035	
	6	-0.0148	0.0006	-0.0001	7	0.0147	0.0030	0.0008	
	8	-0.0012	-0.0014	-0.0004	9	-0.0082	0.0011	-0.0005	
	10	-0.0080	0.0015	•••	11	0.0067	0.0033	0.0001	
	12	-0.0023	0.0005						
30.63*	0		·		1	-0.5443	0.0285	0.0069	
00 00	2	-0.5959	÷0·1601	-0.0236	3	-0.3038	-0.0424	-0.0010	
	4	-0.0240	0.1052	0.0205	5	-0.0174	0.0362	-0.0048	
	6	-0.0247	-0.0089	-0.0068	7	-0.0123	-0.0084	0.0004	
	8	0.0173	0.0192	0.0008	9	0.0083	-0.0034	-0.0072	
	10	0.0014	-0.0132	-0.0003	11	-0.0037	-0.0108	0.0056	
	12	0.0097	-0.0056	0.0001					
40	0			***	1	-0.2427	-0.0042	-0.0012	
	2	0.0105	0.0078	-0.0020	3	0.0603	-0.0015	-0.0005	
	4	-0.0026	-0.0096	-0.0022	5	-0.0255	0.0021	0.0014	
	6	-0.0029	0.0012	0.0009	7	0.0116	-0.0008	-0.0004	
	8	-0.0045	-0.0032	-0.0002	9	-0.0069	0.0034	0.0013	
	10	-0.0042	-0.0025		11	0.0062	0.0013	-0.0012	
	12	-0.0029	0.0013						

TABLE XXIV

TIDES IN OCEANS BOUNDED BY MERIDIANS

VALUES OF v.

β		σa .	Coefficient $H/h \cdot \sin s\theta$					efficients of i cos s	nχ . e ^{iσι}
	/								
	s	n = 0	, 2	4	6	s	n = 1	3	5
10.948*	1	0.2386	0.2575	0.0118	0.0004	0	-0.5035	-0.0080	-0.0001
	3	0.1458	-0.2035	-0.0053	-0.0001	2	-0.1265	-0.0493	-0.0025
	5	-0.0194	0.0464	-0.0049	-0.0004	4	-0.0149	0.0812	0.0045
	7	0.0185	-0.0344	0.0072	0.0004	6	0.0050	-0.0410	-0.0025
	9	-0.0095	0.0221	-0.0076	-0.0004	8	-0.0038	0.0237	0.0006
	11	0.0105	-0.0188	0.0041	0.0001	10	0.0026	-0.0202	0.0003
						12	-0.0031	0.0134	-0.0002
			r .					2	
	1	0.3852	0.1651	0.0171	0.0013	0	-0.6661	-0.0328	-0.0020
	3	0.1906	-0.2265	-0.0213	-0.0013	2	-0.2408	-0.0067	-0.0011
20	5	-0.0384	0.0590	0.0064	0.0005	4	0.0163	0.0582	0.0063
	7	0.0386	-0.0520	0.0037	0.0005	6	-0.0051	-0.0322	-0.0047
	9	-0.0192	0.0339	-0.0050	-0.0007	8	0.0019	0.0194	0.0021
	11	0.0231	-0.0311	0.0033	0.0001	10	0.0002	-0.0180	-0.0011
						12	-0.0013	0.0122	0.0002
30.63*	1	0.0512	-0.5976	0.0255	0 0027	Δ.	0 6974	0.9050	0.0024
30.03	3	0.1675	-0.03976 -0.0784	-0.0255 -0.1384	0.0037	0	-0.6374	-0.2656	-0.0234
	5	0.1673	-0.0784 -0.1474	0.1384 0.1290	-0.0140	2	-0.3371	0.3762	0.0290
	7	-0.0060	0.0432	-0.1290 -0.0671	0.0151	4	0.1203	-0.1773	0.0020
	9	0.0072	-0.0432	0.0671	-0.0065	6	-0.0661	0.1153	-0.0142
	11	-0.0072	0.0378	-0.0701	0.0012	8	0.0449	-0.0701	0.0190
	11	-0.0107	0.0401	-0.0376	-0.0001	10 12	-0.0277	0.0645	-0.0219
						1.2	0.0300	0.0432	0.0092
40	1	0 · 1500	0.0945	-0.0066	-0.0007	0	-0.1358	0.0289	0.0022
	3	0.0383	-0.0565	0.0149	0.0017	2	-0.0600	-0.0507	-0.0022
	5	-0.0249	0.0426	-0.0174	-0.0017	4	-0.0005	0.0307	-0.0030 -0.0002
	7	0.0192	-0.0286	0.0174	0.0010	6	0.0057	-0.0253	0.0002
	9	-0.0097	0.0205	-0.0120	-0.0010	8	-0.0037	0.0253	-0.0017
	11	0.0141	-0.0200	0.0079		10	0.0042	-0.0154	0.0032
	^ ^	0 0111	0 0220	0 0013	•••	12	-0.0037	0.0136	-0.0042 -0.0019
						14	-0.0049	0.0100	-0.0018

A. T. DOODSON

TABLE XXV (a)

Values of $\zeta/He^{i\sigma t}$ for the Diurnal Tide (K_1) . $\beta = 10.948.$

		Coefficient	s* of				
		$\sin s\theta \sin n\chi$	(s > 0)		Co	efficients* of	•
		$\theta \sin n \chi$	(s=0)		i	$\cos s\theta \sin n\chi$	
S	n = 1	3	5	7	n=2	4	6
0	0.301	0.336	0.016	•	-1.085	0.020	0.001
$\overset{\circ}{2}$	0.188	-0.304	-0.011		-0.184	-0.010	
4	-0.199	0.085	0.000		0.003	-0.001	
6	0.036	-0.021	0.003		-0.004	0.001	
8	-0.019	0.012	-0.002		0.000	-0.001	
10	0.011	-0.007	0.002		-0.001	0.001	
12	-0.005	0.003	0.000				
1.	-1.632	-0.190	-0.012		1.250	-0.042	-0.003
3	-0.032	0.066	0.006		-0.009	0.056	0.003
5	-0.009	-0.008	-0.001		0.039	-0.032	-0.002
7	0.002	0.003			-0.014	0.012	0.001
9	-0.001	-0.001			0.008	-0.007	
11		0.001			-0.005	0.004	
13					0.002	-0.001	-

^{*} Relative values only; resonant case.

Table XXV (b)

Coefficients of

Values of $\zeta/He^{i\sigma t}$ for the Diurnal Tide (K_1) .

 $\beta = 20.$

		$\sin s\theta \sin n\chi$ $\theta \sin n\chi$	(s = 0)		_	Coefficients of $i\cos s\theta \sin n\chi$			
S	n=1	3	5	7	$\widehat{n=2}$	4	6		
0	1.513	0.370	0.040	0.003	—1·7 30	-0.099	-0.006		
2	1.003	-0.441	-0.045	-0.003	-1.017	-0.075	-0.005		
4	-0.465	0 · 161	0.016	0.001	0.000	0.015	0.002		
6	0.110	-0.045	-0.001		-0.012	0.001			
8	-0.063	0.030	-0.002		-0.001	-0.001			
10	0.037	-0.018	0.002		-0.004	0.001			
12	-0.016	0.007	-0.001		-0.001	0.000			
1	-4·311	-0.235	-0.027		2.581	$0 \cdot 140$	0.007		
3	0.003	0.065	0.014		0.160	0.048	0.006		
5	-0.048	0.001	-0.004		0.034	-0.040	-0.005		
7	0.011	0.002	0.001		-0.016	0.016	0.002		
9	-0.005	0.001			0.010	-0.009	-0.001		
11	0.003	0.001			-0.007	0.007			
13					0.003	-0.002			

TABLE XXV (c) Values of $\zeta/He^{i\sigma t}$ for the Diurnal Tide (K_1) . $\beta = 30.63.$

TIDES IN OCEANS BOUNDED BY MERIDIANS

		Coefficient	s* of				
		$\sin s\theta \sin n\chi$	(s > 0)		C	loefficients* o	ıf
		$\theta \sin n\chi$	(s=0)			$i\cos s\theta \sin n\chi$	
s	$\widehat{n}=1$	3	5	7	$\widehat{n=2}$	4	6
0	$2 \cdot 680$	$-2 \cdot 385$	0.083	0.014	1 · 185	$-2 \cdot 251$	-0.194
2	-0.549	$1 \cdot 308$	-0.280	-0.034	$-2 \cdot 281$	-0.613	-0.090
4	-0.133	-0.322	0.228	0.028	-0.046	0.201	0.039
6	-0.211	$0 \cdot 247$	-0.111	-0.014	-0.031	-0.011	-0.009
8	0.051	-0.104	0.062	0.004	0.017	0.018	0.001
10	-0.043	0.071	-0.041		0.001	-0.010	
12	0.020	-0.025	0.012		0.006	-0.004	
1	4.168	0.218	0.053		0.116	3 · 184	0.290
.3	-0.776	-0.108	-0.002		$1 \cdot 290$	-0.672	-0.034
5	-0.027	0.055	-0.007		-0.367	0.236	-0.012
7	-0.013	-0.009	0.000		0.162	-0.120	0.018
9	0.007	-0.003	-0.006		-0.088	0.075	-0.017
11	-0.003	-0.008	0.004		0.058	-0.048	0.011
13					-0.022	0.015	-0.003

^{*} Relative values only; resonant case.

Table XXV (d)Values of $\zeta/H \emph{e}^{\emph{ist}}$ for the Diurnal Tide $(K_1).$ $\beta = 40.$

		Coefficie	nts of				
		$\sin s\theta \sin n\chi$	(s > 0)		(Coefficients of	f
		$\theta \sin n\chi$	(s=0)		;	$i\cos s\theta \sin n\chi$,
S							
	n = 1	3	5	7	n = 2	4	6
0	1.028	0.506	-0.030	-0.003	1 · 126	0.394	0.046
2	0.719	-0.431	0.048	0.006	-0.447	0.039	-0.010
4	-0.282	$0 \cdot 164$	-0.036	-0.005	-0.007	-0.024	-0.006
6	$0 \cdot 133$	-0.084	0.022	0.002	-0.005	0.002	0.002
8	-0.067	0.047	-0.015	-0.001	-0.006	-0.004	
10	0.045	-0.032	0.011		-0.004	-0.003	
12	-0.021	$0 \cdot 012$	-0.003		-0.002	0.001	
_							
1	$-2\cdot 427$	-0.042	-0.012		1.600	-0.505	-0.037
3	$0 \cdot 201$	-0.005	-0.002		-0.049	$0 \cdot 142$	0.005
5	-0.051	0.004	0.003		0.070	-0.064	0.002
7	0.017	-0.001	-0.001		-0.036	0.033	-0.004
9	-0.008	0.004	0.001		0.022	-0.021	0.004
11	0.006	0.001	-0.001		-0.016	0.015	-0.003
13					0.006	-0.005	0.001

A. T. DOODSON

0.00 0.57 1.01 1.27 1.38 1.39

0.00 0.54 0.85 0.94 0.93

0.00 0.51 0.76 0.78 0.72 0.72

0.00 0.48 0.71 0.72 0.67

0.43 0.66 0.70 0.67 0.67

0.00 0.37 0.60 0.68 0.68 0.68

 $\begin{array}{c} 0.00 \\ 0.30 \\ 0.51 \\ 0.61 \\ 0.64 \\ 0.65 \end{array}$

 $\begin{array}{c} 0.00 \\ 0.21 \\ 0.37 \\ 0.47 \\ 0.51 \\ 0.52 \end{array}$

0.00 0.10 0.20 0.26 0.29 0.29

00.00

0.24.08.08

Values of $\zeta_1,\,\zeta_2,\,R,\,\gamma$ for the Diurnal Tide $(K_1).$

TABLE XXVI (a)

					ගි.	$\beta = 10.948.$					
	×	$\theta = 0^{\circ}$	$^{\circ}01$	20°	30°	40°	50°	°09	°02	$^{\circ}08$	°06
*. ;;	0	0.000	000.0	0.000	000.0	$0.00 \cdot 0$	$000 \cdot 0$	$0.000 \cdot 0$	0.000	$0.000 \cdot 0$	$0.00 \cdot 0$
d o	20	000.0	-0.104	-0.204	-0.285	-0.342	-0.376	-0.380	-0.352	-0.285	-0.159
	40	000.0	-0.197	-0.366	-0.492	-0.570	-0.603	$909 \cdot 0 -$	-0.594	-0.568	-0.510
	09	0000.0	-0.260	-0.466	-0.602	-0.661	-0.667	$699 \cdot 0 -$	-0.693	-0.792	-0.992
	80	000.0	-0.288	-0.510	-0.643	-0.676	$099 \cdot 0 -$	-0.664	-0.707	$806 \cdot 0 -$	-1.342
	06	0.000	-0.291	-0.515	-0.647	929.0—	-0.657	-0.661	-0.706	-0.922	-1.392
*	0	0.000	0.000	0.000	0.000	0.000	0.000	0000.0	000.0	000.0	000.0
ጉ የ		000.0	600.0	0.034	0.077	0.138	0.208	0.287	0.374	0.460	0.548
	40	000.0	0.014	0.051	0.115	0.191	0.273	0.370	0.481	0.635	0.871
	09	000.0	0.012	0.047	0.100	0.152	0.210	0.268	0.346	0.498	0.796
	80	0.000	0.005	0.020	0.040	0.056	0.071	0.094	0.120	0.183	0.321
	06	0.0000	000.0	0.000	$0.00 \cdot 0$	$0.00 \cdot 0$	$000 \cdot 0$	$0.00 \cdot 0$	$0.00 \cdot 0$	$0.00 \cdot 0$	$0.00 \cdot 0$
понавлення принципальной веропальной			THE REAL PROPERTY OF THE PROPE		dendaman versigrephendelephone proprietation and comment of the co	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA					

101° 106 120 141 167 180

121° 122 132 148 169 180

131° 133 141 153 170 180

143 149 158 172 180

149° 151 156 156 174 180

158 161 167 175 180

165 168 171 171 176 180

170° 171 172 174 178 180

175° 175 176 177 179 180

180° 180 180 180 180 180

0 8 9 8 8

Relative values; resonant case. The values of γ change by 180° as R becomes infinite.

TIDES IN OCEANS BOUNDED BY MERIDIANS

331

TABLE XXVI (b)

Values of $\zeta_1,\,\zeta_2,\,R,\,\gamma$ for the Diurnal Tide $(K_1).$

	$^{\circ}06$	0.000	-0.423	-1.056	-1.746	$-2 \cdot 207$	-2.272	0.000	0.460	0.693	0.595	0.230	000.0	00.00	0.63	1.26	1.84	2.22	2.27	126°	133	147	.161	174	180
	°08	000.0	-0.558	-0.950	-1.134	-1.204	-1.213	0.000	0.304	0.355	0.225	0.072	000.0	00.0	0.64	1.02	1.16	1.21	1.21	. 148°	151	159	169	177	180
	.02	0.000	$909 \cdot 0 -$	-0.867	-0.830	-0.749	-0.737	0.000	0.196	0.192	0.092	0.024	0.000	00.0	0.64	$68 \cdot 0$	0.84	0.75	0.74	160°	162	167	174	178	180
	°09	000.0	-0.602	-0.834	-0.765	-0.667	-0.653	0.000	0.121	0.112	0.050	0.013	0.000	00.0	0.62	0.85	0.77	0.67	0.65	167°	169	172	176	179	180
	50°	0.000	-0.566	-0.803	-0.755	-0.658	-0.642	0.000	0.070	0.062	0.022	0.003	0.000	00.00	0.57	0.81	0.76	$99 \cdot 0$	0.64	172°	. 173	176	178	180	180
= 20.	40°	0.000	-0.504	-0.762	-0.786	-0.738	-0.729	000.0	0.034	0.037	0.023	800.0	0.000	00.00	0.51	9.76	0.79	0.74	0.73	176°	176	177	178	179	180
න.	30°	000.0	-0.412	-0.674	-0.772	-0.789	-0.790	000.0	0.007	0.011	0.013	0.007	000.0	00.0	0.41	0.67	0.77	62.0	62.0	179°	179	179	179	179	180
	20°	000.0	-0.289	-0.506	-0.626	-0.673	829.0—	0.000	$900 \cdot 0 -$	$600 \cdot 0 -$	-0.008	-0.003	000.0	0.00	0.29	0.51	0.63	0.67	89.0	181°	181	181	181	180	180
	10°	$0.00 \cdot 0$	-0.147	-0.271	-0.357	-0.400	-0.405	0.000	-0.004	-0.007	900.0-	-0.002	000.0	00.00	0.15	0.27	0.36	0.40	0.41	182°	182	181	181	180	180
	$\theta = 0^{\circ}$	0.000	000.0	$000 \cdot 0$	$0.00 \cdot 0$	000.0	000.0	0.000	$000 \cdot 0$	$0.00 \cdot 0$	000.0	$0.00 \cdot 0$	000.0	00.00	00.0	00.00	00.00	00.00	00.0	180°	180	180	180	180	180
	×	$^{\circ}0$	50	40	09	80	06	0	20	40	09	08	06	0	20	40	09	08	06	0	20	40	09	80	06
		ζ_{1}/H						ζ_2/H						R/H						~				•	

A. T. DOODSON

332

TABLE XXVI (c)

Values of $\zeta_1,\,\zeta_2,\,R,\,\gamma$ for the Diurnal Tide $(K_1).$

* Relative values ; resonant case. The values of γ change by 180° as R becomes infinite.

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

TABLE XXVI (d)

Values of $\zeta_1,\,\zeta_2,\,R,\,\gamma$ for the Diurnal Tide $(K_1).$

						$\beta = 40$.					
	×	$\theta = 0$ °	10°	20°	°30°	40°	50°	°09	$^\circ$ 02	$^{\circ}08$	°06
$\chi_{1/H}$	°0	0.000	0.000	0.000	0.000	0.000	0.000	000.0	000.0	0.000	000:0
	20	0.000	-0.014	-0.036	-0.050	-0.050	-0.041	-0.024	0.014	0.094	0.235
	40	$0.00 \cdot 0$	-0.019	-0.046	-0.071	-0.083	$060 \cdot 0 -$	-0.102	-0.116	-0.110	-0.018
	09	$0.00 \cdot 0$	-0.023	-0.049	-0.085	-0.094	-0.114	-0.175	-0.236	-0.456	$806 \cdot 0 -$
	80	$0.00 \cdot 0$	-0.023	-0.053	-0.103	$660 \cdot 0 -$	-0.128	-0.233	-0.283	-0.688	-1.773
	06	000.0	-0.023	-0.054	-0.107	660.0	-0.131	-0.243	-0.289	-0.720	-1.907
ζ_2/H	0	000.0	000.0	000.0	000.0	0.000	000.0	000.0	0.000	0.000	0.000
	50	$0 \cdot 0$	-0.017	-0.042	-0.035	-0.020	-0.012	0.008	0.048	0.074	0.075
	40	0.000	-0.015	-0.031	-0.004	0.022	0.036	$080 \cdot 0$	0.151	0.300	0.604
	09	$0.00 \cdot 0$	$900 \cdot 0 -$	-0.012	0.016	0.018	0.013	0.061	0.100	0.292	0.878
	80	$0.00 \cdot 0$	-0.001	-0.005	0.004	900.0	-0.017	0.004	0.005	$980 \cdot 0$	0.404
	06	0.000	000.0	0.000	0.000	0.000	0.000	0.000	0.000	000.0	0.00
R/H	0	00.00	00.00	00.0	00.00	00.0	00.00	00.00	00.0	0.00	00.00
	20	$0 \cdot 0$	0.02	$90 \cdot 0$	$90 \cdot 0$	$90 \cdot 0$	0.04	0.02	0.05	0.12	0.25
	40	$0 \cdot 0$	0.02	$90 \cdot 0$	0.07	0.08	0.10	0.13	0.19	0.32	0.61
	09	00.0	0.02	0.05	60.0	0.10	0.12	0.19	0.26	0.54	1.26
	80	0.00	0.02	0.05	0.10	0.10	0.13	0.23	0.28	69.0	1.82
	06	00.0	0.02	0.05	0.11	0.10	0.13	0.24	0.29	0.72	1.91
>	0	180°	231°	233°	222°	222°	230°	264°	°S	00	344
	20	180	230	229	215	202	196	172	74	38	18
	40	180	218	214	183	165	158	142	128	110	92
	09	180	195	194	169	169	173	161	157	147	136
٠	80	180	182	185	178	183	188	179	179	173	167
	90	180	180	180	180	180	180	180	180	180	180

A. T. DOODSON

APPENDIX

Fourier Expansions of Associated Legendre Functions

By A. T. Doodson, F.R.S.

1—Introduction

The lack of Tables of the Associated Legendre Functions in a suitable form has been the source of much inconvenience to research workers. It was intended, in connexion with the investigations on "Tides in Oceans bounded by Meridians", to publish a Table of these functions, P_r^n (cos θ), which was computed for r up to 12, n up to 6, and θ at intervals of 10° , but in the course of the work it became necessary to multiply the functions by trigonometrical expressions and then to integrate the products, with respect to θ . Operations involving integration of these functions, however, are not readily expressed mathematically, and the numerical application of the results would be very cumbrous, even if possible.

These difficulties were overcome by expressing the functions in their Fourier Expansions, which are finite series for integral values of r and n. Such series can be combined with trigonometrical expressions and integration with regard to θ is obviously easy.

Further advantages of the Fourier expansions, even if integration processes are not required, can be claimed. Normally, the solution of a problem is expressed as a series of a very large number of these functions, and it is not a simple matter to deduce, by inspection, the character of the result. If, however, the Fourier expansions are used, then the solution is ultimately expressed in a single Fourier expansion, and this, being in familiar trigonometrical terms, can be more readily interpreted. Questions of convergence also become simplified. Again, the flexibility of the trigonometrical expansion is such that any values of θ can be adopted for numerical representation, and we are not limited to specified values of θ in tables of functions. To illustrate a solution for a number of values of θ is less laborious by this method than by the use of tables of the functions. Hence it may be claimed that the Fourier expansions are much more serviceable than tables of the functions.

2—RECURRENCE FORMULAE

By Ferrer's definition, P_r^n (cos θ) is the product of $\sin^n \theta$ and a descending series in powers of cos θ , whose first term is $(\cos \theta)^{r-n}$. It is readily deduced that we have finite series in the forms

$$P_r^n(\cos \theta) = \sum a_s^n \cos s\theta$$
 (n even, $s \le r$), (2.1)

$$P_{s}^{n}(\cos \theta) = \sum b_{s}^{n} \sin s\theta \qquad (n \text{ odd}, s \leq r), \quad . \quad . \quad . \quad (2.2)$$

ASSOCIATED LEGENDRE FUNCTIONS

and substitutions in the differential equation

$$\sin \theta \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} P_r^n \right) + \left\{ r \left(r+1 \right) \sin^2 \theta - n^2 \right\} P_r^n = 0 \quad . \quad . \quad (2.3)$$

335

yield the general recurrence equations

$$\{r(r+1)-(s-1)(s-2)\}\ a_{s-2}^n=\{2r(r+1)-2s^2-4n^2\}\ a_s^n\ +\{(s+1)(s+2)-r(r+1)\}\ a_{s+2}^n,\ (2.4)$$

$$\{r\ (r+1)-(s-1)\ (s-2)\}\ b_{s-2}^{n}=\{2r\ (r+1)-2s^{2}-4n^{2}\}\ b_{s}^{n}+\{(s+1)\ (s+2)-r\ (r+1)\}\ b_{s+2}^{n},\ (2.5)$$

with the special relations

$$2r(r+1) a_0^n = \{2 r(r+1) - 2.2^2 - 4n^2\} a_2^n + \{4.3 - r(r+1)\} a_k^n, \quad (2.6)$$

$${r(r+1)-2.1^2-4n^2} a_1^n = -{3.2-r(r+1)} a_3^n, \quad . \quad (2.7)$$

$${3 r (r+1) - 2.1^2 - 4n^2} b_1^n = -{3.2 - r (r+1)} b_3^n.$$
 (2.8)

By taking the last term in the series (s = r) to have its coefficient as unity, for the purposes of the first stage of the computation, the relative values of the coefficients were readily determined by these recurrence formulae.

3—Computation of Last Terms of Series

Several methods of computation are available, but the following is simple.

Let c_r^n be the last term of a series (s = r), whether with coefficients a_s^n or b_s^n . Then we use two well-known formulae

$$(2r+1)\cos\theta P_r^n = (r-n+1)P_{r+1}^n + (r+n)P_{r-1}^n, \dots (3.1)$$

$$P_{r+1}^{n} - P_{r-1}^{n} = (2r+1) \sin \theta P_{r}^{n-1} \dots$$
 (3.2)

From the former we deduce

$$\frac{2r+1}{2}c_r^n=(r-n+1)c_{r+1}^n, \ldots (3.3)$$

and from the latter, with r = n,

$$c_n^n = \frac{1}{2} (2n - 1) c_{n-1}^{n-1}$$
 (n odd), (3.4)

$$c_n^n = -\frac{1}{2} (2n-1) c_{n-1}^{n-1}$$
 (n even), (3.5)

with

$$c_0^0 = 1, \quad c_1^1 = 1, \dots, (3.6)$$

A. T. DOODSON

Hence we get

$$c_r^n = \pm \frac{(2r)!}{2^{2r-1}r!(r-n)!}, \ldots (3.7)$$

and the positive sign is taken when $\frac{1}{2}n$ and n are even, and also when $\frac{1}{2}(n+1)$ is even, with n odd.

In the calculation of c_r^n , however, the relations (3.3) to (3.6) were used to get successive values.

4—Use of the Integral of the Square of the Function

These functions increase rapidly in value with r and n, and in order to use numerical values less than unity many investigators have found it convenient to work with such expressions as

$$P_r^n(\cos\theta)/P_r^n(0)$$
 and $P_r^n(\cos\theta)/P_r^{n-1}(0)$.

The customary methods of determining coefficients of these functions, however, make use of the integrals

and

$$\int_{-1}^{1} P_{r}^{n} P_{s}^{n} d (\cos \theta) = 0 \qquad (r \neq s),$$

$$\int_{-1}^{1} \{P_{r}^{n}\}^{2} d (\cos \theta) = \frac{2}{2r+1} \frac{(r+n)!}{(r-n)!} = \{N_{r}^{n}\}^{2}, \text{ say } ... (4.1)$$

in a manner analogous to that used in the determination of ordinary Fourier coefficients.

For this reason, it was decided to compute the functions P_r^n/N_r^n as being the most useful form.

5—Tables of Expansions

It is convenient to use the notation

$$F_r^n(\theta) = P_r^n(\cos\theta)/N_r^n$$

and the expansions of $F_r^n(\theta)$ are given for r and n up to 12 in four tables herewith. The values of N_r^n are also given in the same tables and an additional table gives a useful list of values of $P_r^n(0)$.

These tables have been compared with direct calculations of $P_r^n(0)$ and $\frac{\partial}{\partial (\cos \theta)} P_{,n}^{n} (\cos \theta)$ at $\theta = \frac{\pi}{2}$, and other tests have been made using the series in $\cos \theta$.

6—Remarks on the Tables

ASSOCIATED LEGENDRE FUNCTIONS

It will be noted that the maximum coefficients in the expansions for $F_r^n(\theta)$ are about 0.5 to 1.0 in each case. This is a very useful feature, as a great drawback to tables of P_r^n is that the values become very large.

The values of N_r^n are also conveniently expressed with factors 10^n .

In connexion with matters of convergence it is useful to consider the values of $P_r^n(0)/N_r^n$; that is, the maximum values of $F_r^n(\theta)$.

We have

$$P_r^n(0) = (-\frac{1}{2})^{\frac{1}{2}(r-n)} \frac{1 \cdot 3 \dots (r+n-1)}{\{\frac{1}{2} (r-n)\}!},$$

so that $P_r^n(0)/N_r^n$ becomes, after some reduction,

$$(-\frac{1}{2})^{\frac{1}{2}(r-n)} \left(\frac{1}{2}\right)^{\frac{1}{2}(r+n)} \frac{\left\{(r+n)! (r-n)!\right\}^{\frac{1}{2}} \left\{\frac{2r+1}{2}\right\}^{\frac{1}{2}}}{\left\{\frac{1}{2} (r+n)\right\}! \left\{\frac{1}{2} (r-n)\right\}!} .$$

The asymptotic form of x!, when x is large, is $(2\pi x)^{\frac{1}{2}}x^xe^{-x}$; whence we get the expression

$$(-1)^{\frac{1}{2}(r-n)} \frac{\sqrt{(2r+1)/\pi}}{(r+n)^{\frac{1}{4}}(r-n)^{\frac{1}{4}}}$$

when (r - n) is large.

Hence, when n is small, we get $(-1)^{\frac{1}{2}(r-n)}\sqrt{\frac{2}{\pi}}$, which is independent of r as regards magnitude.

When n is equal to r, we must return to the original expression, which gives, after a similar reduction, $\left(\frac{r}{\pi}\right)^{\frac{1}{4}}$. This varies so slowly that it is hardly likely to need consideration in matters of convergence.

Hence we conclude that we need only consider the coefficients of F_r^n (θ) with regard to convergence, taking the absolute maximum value of F_r^n (θ) itself as being approximately constant for large values of r.

A. T. DOODSON

TABLE A—I

338

Values of $F_{r}^{n}\left(\theta\right)=P_{r}^{n}\left(\cos\,\theta\right)\!/N_{r}^{n}.$ Coefficients of $\cos s\theta$.

				JOS.	COEFFICIENTS OF COS 50	os so.			
и	٠	s = 0	2	4	9	8	10	12	$N_r^n/10^n$
0	•	0.7071068							1.4142136
	2	0.3952847	1.1858541						0.6324555
	4	0.2983107	0.6629126	1.1600971					0.4714045
	9	0.2489756	0.5228487	0.6274184	1.1502671				0.3922323
	8	0.2179845	0.4484253	0.4932678	0.6107125	1.1450859			0.3429972
	10	0.1962437	0.3997558	0.4242306	0.4772594	0.6009934	1.1418874		0.3086067
	12	0.1799198	0.3645129	0.3797010	0.4098359	0.4672130	0.5946347	1.1397165	0.2828427
2	61	0.4841229	-0.4841229						0.03098387
	4	0.3144471	0.4192627	-0.7337098					0.08944272
	9	0.2551240	0.4337109	0.1530744	-0.8419093				0.16076739
	8	0.2210766	0.4042544	0.2779249	$0.000000 \cdot 0$	-0.9032560			0.2435038
	10	0.1980525	0.3740991	0.3035907	0.1663910	-0.0992508	-0.9428825		0.3363671
	12	0.1810844	0.3480583	0.3037671	0.2221093	0.0844015	-0.1688030	-0.9706175	0.4383971
4	4	0.4159743	-0.5546324	0.1386581					0.009465728
	9	0.2794744	0.1397372	-0.7266334	0.3074218				0.05283356
	8	0.2318671	0.2649910	-0.2384919	$9926889 \cdot 0$	0.4306104			0.15323339
	10	0.2040252	0.2947031	-0.0129540	-0.4031927	-0.6055987	0.5230171		0.3395809
	12	0.1848185	0.2976297	0.0956096	-0.1904190	-0.4651665	-0.5168517	0.5943794	0.6443095
9	9	0.3784101	-0.5676151	0.2270461	-0.0378410				0.008584437
	∞	0.2579979	$0.000000 \cdot 0$	-0.6191950	0.4717676	-0.1105705			0.07161100
	10	0.2164014	0.1522825	-0.3801338	-0.4070408	0.6034051	-0.1849145		0.2881440
	12	0.1920125	0.2094682	-0.1832847	-0.4471980	-0.1800429	0.6633160	-0.2542711	0.8434304
8	∞	0.3532782	-0.5652451	0.2826226	-0.0807493	0.0100937			0.015689183
	10	0.2428386	-0.0809462	-0.5088047	0.5377141	-0.2274203	0.0366185		0.17460668
	12	0.2050133	0.0745503	-0.4193454	-0.1686256	0.5972898	-0.3603264	0.0714440	0.9005372
10	10	0.3347299	-0.5578832	0.3187904	-0.1195464	0.0265659	-0.0026566		0.04813574
	12	0.2312862	-0.1321635	-0.4130110	0.5506814	-0.3193952	0.0941165	-0.0115142	0.6705224
12	12	0.3202012	-0.5489164	0.3430727	-0.1524768	0.0457430	-0.0083169	0.0006931	0.2227911

Values of $F_r^n(\theta) = P_r^n(\cos \theta)/N^n$. TABLE A-II

ASSOCIATED LEGENDRE FUNCTIONS

	${ m N_r}^n/10^n$	$\begin{array}{c} 0.8164966 \\ 0.5345225 \end{array}$	0.4264014	0.3651484	0.3244428	0 · 2948839	0.05855401	0.12358287	0.2007984	0.2887359	0 · 3862867	0.02568622	0.09418280	0.2337156	0.4749913	0.02881440	0.15146503	0.5076854	0.06118887	0.4198777	0.2107769
	11					1.1407072					-0.9578736				0.5608734			-0.2203967		0.0532975	-0.0063703
	6				1.1433174	0.5975133				-0.9249893	-0.1368391			0.4799534	-0.5608734		-0.1481168	0.6401998	0.0219986	-0.2969433	0.0573324
Coefficients of $\cos s\theta$.	7			1.1473290	0.6052857	0.4717210			-0.8762870	-0.0544111	0.1224350		0.3736500	-0.6493487	-0.4427948	-0.0732788	0.5489036	-0.2899956	-0.1539904	0.5862726	-0.2229595
COEFFICIEN	ıo		1.1542820	0.6177925	0.4842285	0.4162244		-0.7965303	0.0674067	0.2176446	0.2605450	0.2299385	-0.7185577	-0.3387906	0.1128693	0.3663940	-0.5227653	-0.4391362	0.4399726	-0.3426269	0.4777703
	တ	1.1692679	0.6412678	0.5054666	0.4345641	0.3884761	-0.6404344	0.2655101	0.3492892	0.3515797	0.3380730	-0.6898154	-0.0862269	0.1129302	0.1910095	-0.6595092	-0.2439571	-0.0386661	-0.6159616	-0.3197851	-0.5733244
	s = 1	$1.2247449 \\ 0.7015607$	0.5496581	0.4680247	0.4148112	0.3765230	0.6404344	0.5310202	0.4595911	0.4101763	0.3736597	0.4598770	0.4311346	0.3952557	0.3646545	0.3663940	0.3659357	0.3479947	0.3079808	0.3197851	0.2675514
		1 8	5	7	6	11	က	S	7	6	11	ro	7	6	Ξ',	7	6	11	6	11	11
	<i>u</i> ·	0					2					4				9			∞		10

TABLE A-III

A. T. DOODSON

$\begin{array}{cccccccccccccccccccccccccccccccccccc$				•	Values of F, $(\theta) = P_r$, $(\cos \theta)/N$.	$(\theta) = \mathbf{P}_r (\cos \theta)$	N_n		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					COEFFICIE	NTS OF SIN 5θ.			
0.9682459 1.0376224 1.0649404 1.0795974 1.0876224 0.1616346 0.28672511 1.0649404 1.0795974 1.0887469 0.1056949 0.2325287 0.4318390 1.0795974 1.0887469 0.0762304 0.1216016 0.1968788 0.2892558 0.4760888 1.0950042 0.0762304 0.1216016 0.1968788 0.2892558 0.4760888 1.0950042 0.7843688 -0.821844 0.7447325 -0.6670987 0.2067407 -0.7396579 0.307817 0.4030334 0.4174084 0.4134813 0.2067407 -0.7925059 0.4772193 0.2866316 -0.6688070 0.2388597 0.3067407 -0.7925059 0.4777193 0.2866344 0.2332614 -0.0153615 -0.6663866 0.3307851 0.07534270 0.0753314 0.565451 -0.5652451 -0.6688070 0.2386386 0.3507851 0.07536589 0.4077409 0.5654461 0.0755341 -0.5689934 0.4154373 -0.6736689 0.0118806 0.488859 -0.5702696 0.3207767 -0.093954 0.0118806 0.033954 <		7	s = 2	4	9	œ	10	12	$N_{r}^{n}/10^{n}$
0.2964635 1.0376224 0.1613546 0.28625287 1.0649404 1.0795974 1.0887469 0.1056949 0.2825287 0.4318390 1.0795974 1.0887469 0.0762304 0.1216016 0.1968788 0.2992588 0.4760888 1.0950042 0.0583688 0.1216016 0.1968788 0.2992588 0.4760888 1.0950042 0.7843688 -0.30122977 -0.5612729 0.204447325 -0.6670987 0.2067407 -0.759059 0.3078917 0.4447325 -0.6670987 0.2067407 -0.7925059 0.2244163 0.4030334 0.4134813 0.2067407 -0.7925059 0.1728173 0.2866316 -0.6688070 0.2388597 -0.7925059 0.4777193 0.2866316 -0.6688070 0.2388597 -0.6736589 0.4077409 0.2799137 0.9662451 0.0153615 -0.6963806 0.3307851 -0.6736589 0.4077409 0.5652451 -0.5652451 -0.0689934 0.4154373 -0.6736589 0.4077409 0.5652451 -0.5662451 -0.2273760 -0.1939451 0.0118806 0.0311807		7	0.9682459						0.15491933
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		4	0.2964635	1.0376224					0.21081851
0.1056949 0.2325287 0.4318390 1.0795974 0.0762304 0.1617952 0.2730294 0.4584197 1.0887469 0.0583688 0.1216016 0.1968788 0.2992558 0.4760888 1.0950042 0.7843688 -0.3921844 0.26612729 0.2992558 0.4760888 1.0950042 0.785917 -0.5612729 0.4447325 -0.6670987 0.2067407 -0.7396579 0.2244163 0.4030334 0.4740222 0.3114349 -0.7396579 0.2067407 0.1728173 0.2244304 0.1310851 0.4134813 0.2067407 -0.7925059 0.6554255 -0.6688070 0.2388597 0.2067407 -0.7925059 0.4777193 0.2866316 -0.6688070 0.2388597 0.4077409 0.5552451 -0.5652451 0.2422479 -0.1127344 -0.6736589 0.4077409 0.5552451 -0.5652451 0.2422479 -0.4934519 0.5342770 -0.1428800 0.4988859 -0.5705696 0.3207767 -0.9950449 0.0118806 0.4077409		9	0.1613546	0.3872511	1.0649404				0.2541956
0.0762304 0.1617952 0.2730294 0.4584197 1.0887469 1.0950042 0.0583688 0.1216016 0.1968788 0.2992558 0.4760888 1.0950042 0.7843688 -0.321844 -0.5612729 -0.6670987 0.7396579 1.0950042 0.378917 0.5131529 0.4447325 -0.6670987 0.2067407 -0.7925059 0.2244163 0.4030334 0.4171084 0.4134813 0.2067407 -0.7925059 0.1728173 0.2866316 -0.688070 0.2388597 -0.7925059 0.4777193 0.2866316 -0.6688070 0.2388597 -0.7925059 0.4777193 0.2865444 0.2332614 -0.2127344 -0.6736589 0.4077409 0.552451 -0.6688070 0.2127344 -0.6736589 0.4077409 0.5652451 -0.5652479 -0.0403747 -0.6736589 0.01428880 0.4989859 -0.5702696 0.3207767 -0.0950449 0.0118806 0.0118806 0.448883 -0.5602354 0.5043144 -0.20333537 -0.003311807 <td></td> <td>∞</td> <td>0.1056949</td> <td>0.2325287</td> <td>0.4318390</td> <td>1.0795974</td> <td></td> <td></td> <td>0.2910428</td>		∞	0.1056949	0.2325287	0.4318390	1.0795974			0.2910428
0.0583688 0.1216016 0.1968788 0.2992558 0.4760888 1.0950042 0.7843688 -0.3921844 -0.5612729 -0.6670987 -0.67796579 0.4592233 0.6122977 -0.5612729 -0.6670987 -0.7396579 0.3078917 0.5131529 0.4447325 -0.6670987 -0.7396579 0.2244163 0.4030334 0.4171084 0.4134813 0.2067407 -0.7925059 0.1728173 0.2866316 -0.6688070 0.2388597 -0.77925059 0.4777193 0.2866316 -0.6688070 0.2388597 0.4077409 0.2799137 0.3965444 0.2332614 -0.0127344 -0.6736589 0.4077409 0.5652451 -0.6689934 0.4154373 -0.0896967 -0.1428880 0.4626461 0.0755341 -0.689934 0.4154373 -0.0896967 -0.1428880 0.4989859 -0.5702696 0.3207767 -0.4934519 0.5332770 -0.1428880 0.4481883 -0.5602354 0.3734903 -0.1493961 0.0339354 -0.0033954 <td></td> <td>10</td> <td>0.0762304</td> <td>0.1617952</td> <td>0.2730294</td> <td>0.4584197</td> <td>1.0887469</td> <td></td> <td>0.3236694</td>		10	0.0762304	0.1617952	0.2730294	0.4584197	1.0887469		0.3236694
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		12	0.0583688	0.1216016	0.1968788	0.2992558	0.4760888	1.0950042	0.3532704
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	i	4	0.7843688	-0.3921844					0.03346640
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		9	0.4592233	0.6122977	-0.5612729				0.09646043
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		8	0.3078917	0.5131529	0.4447325				0.19782345
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		10	0.2244163	0.4030334	0.4740222	0.3114349	-0.7396579		0.3430285
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		12	0.1728173	0.3216322	0.4171084	0.4134813	0.2067407	-0.7925059	0.5369246
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	9	0.6554255	-0.5243404	0.1310851				0.02478113
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		∞	0.4777193	0.2866316	-0.6688070	0.2388597			0.11049817
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		10	0.3584358	0.4096409	-0.0153615	$968E969 \cdot 0 -$	0.3307851		0.3221547
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		12	0.2799137	•	0.2332614	-0.2127344	-0.6736589	0.4077409	0.7513875
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	8	0.5652451		0.2422479	-0.0403747			0.03922296
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		10	0.4626461	0.0755341	-0.6089934	0.4154373	$2969680 \cdot 0 - 0$		0.2376096
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		12	0.3727514	•	-0.2573760	-0.4934519	0.5342770	-0.1428880	0.9005372
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	10	0 · 4989859	-0.5702696	0.3207767	-0.0950449	0.0118806		0.10763479
$0.4481883 \qquad -0.5602354 \qquad 0.3734903 \qquad -0.1493961 \qquad 0.0339537 \qquad -0.0033954$		12	0.4392415		-0.5016030	0.5043144	-0.2033526	0.0311807	0.8253560
		12	0.4481883	-0.5602354	0.3734903	-0.1493961	0.0339537	-0.0033954	0.4547704

ASSOCIATED LEGENDRE FUNCTIONS

Values of F_r^n (0) = P_r^n (cos 0)/ $N_r^n.$

TABLE A—IV

TRANSACTIONS SOCIETY A

341

s = 1	_	ಣ	5	S 7	6	11	$N_r^{n}/10^n$
0.866025	254						0.11547005
0.202523	5231	1.0126157					0.18516402
0.1003534	3534	0.3512368	1.0537105				0.23354968
90.0	0.0625424	0.2026374	0.4127800	1.0732280			0.2732520
0.04	0.0437249	0.1374212	0.2552108	0.4466190	1.0846461		0.3077935
0.03	0.0327721	0.1014375	0.1811384	0.2874063	0.4680617	1.0921440	0.3387958
0.78	0.7843688	-0.2614563					0.01434274
0.32	0.3251821	0.7045612	-0.4877732				0.06054300
0.19	0.1949880	0.5069687	0.5243010	-0.6196284			0.14198592
0.15	0.1342617	0.3708180	0.4986863	0.3740147	-0.7064723		0.2646308
0.0	0.0998648	0.2837427	0.4161031	0.4446359	0.2560025	-0.7680075	0.4336057
0.7	0.7271294	-0.3635647	0.0727129				0.008122695
0.3	0.3592789	0.4742481	-0.6179596	0.1868250			0.05650968
0.2	0.2362105	0.4724210	0.1214797	-0.6917593	0.2868270		0.19554051
0.1	0.1722831	0.4019938	0.3240562	-0.1255205	-0.6889682	0.3709829	0.5026835
0.6	0.6854604	-0.4112762	0.1370921	-0.0195846			0.010781360
0.3	0.3697279	0.3169096	-0.6187283	0.3357733	-0.0641365		0.10493805
0.2	0.2567731	0.4035005	-0.1179060	-0.5615819	0.4812311	-0.1161592	0.4816327
9.0	0.6533259	-0.4355506	0.1866646	-0.0466661	0.0051851		0.02596024
0.3	0.3715567	0.2064204	-0.5750282	0.4275851	-0.1484261	0.0206420	0.3252358
9.0	0.6274636	-0.4481883	0.2240942	-0.0746981	0.0149396	-0.0013581	0.09886314

ASSOCIATED LEGENDRE FUNCTIONS

Table A—V

Table of $P_r^n(0)/10^n$.

n	r			n	r	
0	0	1.00		1	1	$0 \cdot 10$
	2	-0.50			3	-0.15
	4	0.375			5	0.1875
	6	-0.3125			7	-0.21875
	8	$0 \cdot 2734375$			9	0.24609375
	10	-0.24609375			11	-0.27070313
	12	$0 \cdot 22558594$				
2	2	0.03		3	3	0.015
	4	-0.075			5	-0.0525
	6	0.13125			7	0.118125
	8	-0.196875			9	-0.2165625
	10	$0 \cdot 27070313$			11	0.35191406
	12	-0.35191406				
4	4	0.0105	***************************************	5	5	0.00945
	6	-0.04725			7	-0.051975
	8	0.1299375			9	0.16891875
	10	-0.28153125			11	-0.42229688
	12	0.52787109				
6	6	0.010395		7	7	0.0135135
	8	-0.0675675			9	-0.10135125
	10	0.25337813			11	0.43074281
	12	-0.71790469				
8	8	0.02027025		9	9	0.03445943
	10	-0.17229713			11	-0.32736454
	12	0.81841134				
10	10	0.06547291		11	11	0.137493106
	12	-0.68746553				
12	12	0.31623414				

The values are exact where the number of figures after the decimal point is less than eight.